subroutine at_ah_galerkin_MMex_Initial(i_in,k_in,j_in, cfdx0_xmax,cfdx1_xmax, cfdx0_xmin,cfdx1_xmin )
!
! チェビシェフ−ガラーキン法
! ディリクレ・ノイマン混合境界条件用モジュール
!
! 初期化サブルーチン
!
integer, intent(IN) :: i_in ! (in)格子点数
integer, intent(IN) :: k_in ! (in)チェビシェフ切断波数
integer, intent(IN) :: j_in ! (in)第 1 次元の大きさ
real(8), intent(IN),optional :: cfdx0_xmin(j_in) ! 境界条件係数(0階微分@x=xmin)
real(8), intent(IN),optional :: cfdx1_xmin(j_in) ! 境界条件係数(1階微分@x=xmin)
real(8), intent(IN),optional :: cfdx0_xmax(j_in) ! 境界条件係数(0階微分@x=xmax)
real(8), intent(IN),optional :: cfdx1_xmax(j_in) ! 境界条件係数(1階微分@x=xmax)
real(8) :: Dfac ! 微分変換係数
real(8) :: Delta(j_in) ! 係数行列の行列式
integer :: j, k, l, m, n
real(8) :: a, b, c, d, e, f
character(len=10) :: cnumber
!---------- 格子点数・切断波数設定 ----------
im=i_in
km=k_in
jm = j_in
!---------- 境界条件係数設定 ----------
if ( allocated(cfd0_xmin) ) deallocate(cfd0_xmin)
if ( allocated(cfd1_xmin) ) deallocate(cfd1_xmin)
if ( allocated(cfd0_xmax) ) deallocate(cfd0_xmax)
if ( allocated(cfd1_xmax) ) deallocate(cfd1_xmax)
if ( allocated(MMex_Delta0) ) deallocate(MMex_Delta0)
allocate(cfd0_xmin(jm),cfd1_xmin(jm))
allocate(cfd0_xmax(jm),cfd1_xmax(jm))
allocate(MMex_Delta0(jm))
Dfac = (g_X(0)-g_X(im))/2.0D0
if( present(cfdx0_xmin) ) then
cfd0_xmin = cfdx0_xmin
else
call MessageNotify('M','at_ah_galerkin_MM_Initial', 'cfdx0_xmin set to zero internally.')
cfd0_xmin = 0.0D0
endif
if( present(cfdx0_xmax) ) then
cfd0_xmax = cfdx0_xmax
else
call MessageNotify('M','at_ah_galerkin_MM_Initial', 'cfdx0_xmax set to zero internally.')
cfd0_xmax = 0.0D0
endif
if( present(cfdx1_xmin) ) then
cfd1_xmin = cfdx1_xmin/Dfac
else
call MessageNotify('M','at_ah_galerkin_MM_Initial', 'cfdx1_xmin set to zero internally.')
cfd1_xmin = 0.0D0
endif
if( present(cfdx1_xmax) ) then
cfd1_xmax = cfdx1_xmax/Dfac
else
call MessageNotify('M','at_ah_galerkin_MM_Initial', 'cfdx1_xmax set to zero internally.')
cfd1_xmax = 0.0D0
endif
!---------- 境界条件係数チェック ----------
Delta = cfd1_xmin*cfd0_xmax-cfd1_xmax*cfd0_xmin -2 * cfd0_xmin*cfd0_xmax
do j=1,jm
if ( abs(Delta(j)) /max(abs(cfd1_xmin(j)),abs(cfd0_xmin(j)), abs(cfd1_xmax(j)),abs(cfd0_xmax(j))) .LT. EPS ) then
write(cnumber,'(I10)') j
MMex_Delta0(j) = .true.
call MessageNotify('W','at_ah_galerkin_MM_Initial', 'Determinant of coefficent matrix equals zero.' )
call MessageNotify('M','at_ah_galerkin_MM_Initial', 'T2 and T1 are used for Galerkin base functions at the ' //trim(adjustl(cnumber))//'-th element.' )
else
MMex_Delta0(j) = .false.
endif
enddo
!---------- ディリクレ・ノイマン混合条件用変換行列設定 ----------
if ( allocated(TH) ) deallocate(TH)
if ( allocated(HT) ) deallocate(HT)
if ( allocated(kp) ) deallocate(kp)
if ( allocated(alpha) ) deallocate(alpha)
if ( allocated(beta) ) deallocate(beta)
allocate(TH(jm,0:km,ks:km),HT(jm,ks:km,ks:km),kp(jm,ks:km))
allocate(alpha(0:km),beta(0:km))
TH = 0.0D0
do j=1,jm
if ( MMex_Delta0(j) ) then
a = 4 * cfd1_xmax(j) + cfd0_xmax(j)
b = cfd1_xmax(j) + cfd0_xmax(j)
c = -4 * cfd1_xmin(j) + cfd0_xmin(j)
d = cfd1_xmin(j) - cfd0_xmin(j)
Delta(j) = a*d - b*c
TH(j,0,2) = cfd1_xmax(j) + cfd0_xmax(j)
TH(j,1,2) = -cfd0_xmax(j)
do k=ks+1,km
e = cfd1_xmax(j) * k**2 + cfd0_xmax(j)
f = cfd1_xmin(j) * (-1)**(k+1) * k**2 + cfd0_xmin(j)*(-1)**k
TH(j,1,k) = -1.0D0/Delta(j)*(-c*e+a*f)
TH(j,2,k) = -1.0D0/Delta(j)*(d*e-b*f)
TH(j,k,k) = 1.0D0
enddo
else
do k=ks,km
TH(j,0,k) = 1.0D0/Delta(j) * ( (-cfd1_xmin(j)+cfd0_xmin(j)) *(cfd1_xmax(j)*k**2+cfd0_xmax(j)) + (cfd1_xmax(j)+cfd0_xmax(j)) *( cfd1_xmin(j)*(-1)**(k+1)*k**2 + (-1)**k*cfd0_xmin(j) ) )
TH(j,1,k) = 1.0D0/Delta(j) * ( cfd0_xmin(j) *(cfd1_xmax(j)*k**2+cfd0_xmax(j)) - cfd0_xmax(j) *( cfd1_xmin(j)*(-1)**(k+1)*k**2 + (-1)**k*cfd0_xmin(j) ) )
TH(j,k,k) = 1.0D0
enddo
endif
end do
beta=1.0
beta(0)=0.5D0
if (im .eq. km ) beta(km)=0.5D0
! ディリクレ・ノイマン混合条件用変換逆行列
alpha=1.0
alpha(0)=2.0D0
HT = 0.0D0
do m=ks,km
do n=ks,km
do l=0,km
HT(:,m,n) = HT(:,m,n) + alpha(l)*TH(:,l,m)*TH(:,l,n)
enddo
enddo
enddo
call LUDecomp(HT,kp)
call MessageNotify('M','at_ah_galerkin_MMex_Initial', 'Conversion matrices initialized')
MMex_Initialized=.true.
end subroutine at_ah_galerkin_MMex_Initial