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Fundamentals of thermal convection I

Navier-Stokes-Equation (conservation of momentum)                               incompressible flow

0)( 2 =⋅∇+∇=∇+∇⋅+
∂
∂ uFuuuu

extp
t

ηρ

Inertial pressure viscous external force                  (conservation of mass)

Assumptions and approximations:  incompressible flow (ρ=const), inertial (non-rotating) 
frame of reference, constant Newtonian viscosity. External forces considered are
gravitational forces and electromagnetic forces.

Boundary conditions:  (1)  u = 0 impenetrable no-slip boundary
(2)   un = ∂uװ/∂n = 0 impenetrable free-slip boundary

Symbols (bold symbols denote vector):   ρ – density, u – velocity, p – pressure,  η – dynamic viscosity, n – direction
normal to boundary, װ – direction parallel to boundary
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Boussinesq approximation
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In thermal convection the flow is driven by differences in temperature that lead by
thermal expansion to (usually small) differences in fluid density:  ρ = ρo(1 - αT).
Conflict with assumption of incompressibility. Boussinesq approximation: assume
ρ=const in all terms, except in that for the external gravity force: Fext = ρg = ρog(1-αT).
g given by gradient of potential: define hydrostatic pressure ∇pH = ρog and dynamic
pressure P = p – pH.
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Energy equation (heat transport
equation). In the Boussinesq
case, adiabatic heating and 
frictonal heat are zero.

Symbols (index o denotes standard or reference value):   α – volumetric thermal expansion coefficient, T – temperature, 
g – gravity, P – dynamic pressure, ν=η/ρ – kinematic viscosity, κ – thermal diffusivity, H‘=H/(ρcp) – H is specific heat
generation rate per unit volume and cp is specific heat capacity.
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Rayleigh – Bénard convection

Plane layer of height D and large (infinite) horizontal extent filled with a Newtonian fluid
with constant material properties. Cartesian coordinates x,y,z,  g = -g ez. Temperature
fixed to T=To+∆T at z=0 and T=To at z=D, H‘=0.   

Scaling of equations
Non-dimensional variables:  (x‘,y‘,z‘) = (x,y,z)/D, t‘ 
= t κ/D2, T‘=(T-To)/∆T, u‘ = u D/κ, P‘ = P D2/(κη). 
Non-dimensional equations (omitting primes):  
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Boundary conditions:  w = ∂u/∂z = ∂v/∂z =0 at z=0 and z=1; T(z=0) = 1; T(z=1) = 0.

By scaling, we replace seven physical parameters (α,κ,ν,∆T,To,g,D) by two numbers. 

Symbols:   ez – unit vector in z-direction (vertical), D – height of layer, Ra – Rayleigh number, Pr – Prandtl number, u = 
(u,v,w) – cartesian velocity components
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Linear stability analysis (I)
• Trivial solution: T = 1 – z,  u = 0,  P = 0. Is this solution stable, i.e. will small perturbation

decay?
• In Earth‘s mantle Pr >>1, assume Pr = ∞. 
• Assume 2-D solution (independence of y,  v=0). 
• Take curl of Navier-Stokes equation (eliminates pressure). Note that ∇×(Tez) = -∂T/∂x ey.
• Represent 2D incompress. flow by stream function ψ:  u = (u,0,w) =  ∇×(ψey) =       

(∂ψ/∂z, 0, -∂ψ/∂x).
• Note that for any a with ∇⋅a=0, ∇2a = -∇×(∇×a). Operators ∇2 and ∇× commute.         
ω=∇×u is called vorticity.

• Perturbation T = 1-z+θ, θ << 1, u << 1. Ignore quadratic terms in small quantities. 
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• Boundary conditions for ψ and θ:  ψ = ∂2ψ/∂z2 = θ = 0  at  z=0 and z=1.
• Expand into normal modes in x-direction:   θ = θk(z,t) exp(ikx);  ψ = ψk(z,t) exp(ikx).
• Expand in harmonic function in z-direction: θk(z,t)=θkn(t) sin(nπ z), ψk(z,t)=ψkn(t) sin(nπ z). 

Note that sine-functions satisfy all the boundary conditions.

Symbols:   ψ – stream function, θ – temperature perturbation, k – horizontal wave number



Christensen: Fluid dynamics of Earth and Planetary Interiors, Kyoto, November 2006 3.5

Linear stability analysis (II)
(k2+n2π2)2 ψkn = Ra ik θkn dθkn/dt = -ik ψkn – (k2+n2π2) θkn                   Eliminate ψkn: 
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The solution has the form θkn ~ eσt. When, at a given value of Ra,  σ < 0 for all n and all 
k, the trivial (conductive) solution is stable. When for some k and n σ > 0, the conductive
solution is unstable and convection will start.  The critical Rayleigh number Racrit is found
by seeking the lowest Ra for which σ=0 is reached at any k,n. Obviously, the minimum is
obtained for n=1.

Rac(k) = (k2+π2)3 / k2

Minimum at kcrit=π/√2. Wavelength is λ = 2 √2. 
Width of one convection cell (aspect ratio) is √2.

Racrit = Rac(kcrit) = 27π4/4 ≈ 657.5

Symbols:   σ - growth rate,  Racrit - critical Rayleigh number, kcrit - critical wave number
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Linear stability analysis (III)
• Result unchanged when 3-D convection pattern is allowed. The critical wave number

is then |k| = (kx
2+ky

2)1/2 = 2√2. Linear stability cannot discriminate between different 
planforms of convection, which is controlled by the non-linear terms. At small super-
critical Rayleigh number, the preferred pattern is two-dimensional (convection rolls).

• Result is unchanged if a finite value of Pr is retained.
• Similar analysis (although more complicated) for other boundary conditions. For 

example with no slip boundaries Racrit = 1708.
• In the case of internal heating, H > 0, ∂T/∂z=0 at z=0, T=0 at z=1, the Rayleigh 

number must be re-defined, replacing ∆T by the characteristic temperature contrast in 
the conductive state, HD2/k

The critical Rayleigh number in this case is, with free-slip boundaries, Racrit = 868.
• In a broad range of other cases (various combinations of mechanical and thermal 

boundary conditions, spherical geometry) the critical Rayleigh number is typically of 
the order 103.
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Symbols:   kx, ky – components of wavenumber vector, k – thermal conductivity, 
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Pattern of convection at Ra > Racrit

Visualization of pattern in convection
experiments by shadowgraph
technique. Regular geometrical pattern
are observed at moderate values of teh
Rayleigh number, up to ≈ 10 Racrit .

At larger Rayleigh number the flow
becomes irregular and time-dependent.

rolls bimodal

squares

hexagons

Symbols:   kx, ky – components of wavenumber vector, k – thermal conductivity, 
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Application to Earth and Planets

For Earth‘s mantle select characteristic values:
α = 2 x 10-5 K-1 ∆T = 2000 K g = 10 m/s2 D = 2,900,000 m
κ = 10-6 m2/s ρ = 4000 kg/m3 η = 1021 – 1022 Pa s   (from postglacial rebound)

⇒ Ra  = 4 x 106 ....  4 x 107 >>  Racrit

For other planets, assume similar values for α, ρ, κ, η. Use RaH with the „chondritic“ value of 
radiogenic heating H = 1.6x10-8 Wm-3 (H‘ = 4x10-15 K/s). Without plate tectonics convection
takes place below a rigid outer shell whose bottom at radius r* is given by a temperature of 
T* ≈1300 K (heat is conducted in the shell). In a conducting, internally heated sphere
T(r) = H‘/(6κ) [ro

2-r2] + To ⇒ r*
2 = ro

2 – 6κ(T*-To)/H‘.   Set D = r* - rc.

ro [km] rc [km] To [K] r* [km] go [m/s2] RaH

Venus 6050 3200 720 5950 8.9 4x108

Mars 3400 1500 220 3060 3.7 1x107

Moon 1740 400 250 960 1.6 3x104

ro

r*

rc

Symbols:   ro – outer radius of planet, To – temperature at ro, T* - transitional temperature, r* - radius of lithosphere-
asthenosphere boundary, rc – core radius, go – gravity at surface
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