Singular Poisson brackets

For the pefect fluid equations we have two alternative formulations
of Hamiltonian dynamics,

Lagrangian formulation

[A,B} = fffda

5B BA 53)

6V( ) 6V(a) 6x(a)

H-= fffda{—v +E % S(a)|+ (D(x(a))}
involves the 6 variables
v(a), x(a)

Eulerian formulation

{A,B} = fffdx ( )53 V(cSB) 0A Vxv 04 OB

ov op 6V Iy 6v ov
.\ .(6A63_6B6A)]
p \ovaS oOv oS
1
H = fffdx p(x {% ‘+E p(x),S(x) +(I>(x)}

involves the 5 variables
v(x), p(x), S(x)
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Thus the transformation from the Lagrangian to the Eulerian
formulation is projective.

Because of this, the Eulerian bracket is singular: There exists
functionals C for which

{A,C} =0 forevery A

In fact

C=[[[dax pF(S.q)

where F is an arbitrary function, and

(Vxv)-VS
0

q:

is the potential vorticity.

C is called a Casimir.
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Summary for the case of discrete variables

dz_ oM
dt gz’

Let J be antisymmetric and obey the Jacobi identity.

If J is nonsingular, then it can always be brought into the canonical
form (Darboux)

If J 1s singular with corank K=2M, then it can be brought into the
form

0o, 1, O
[7*]=|-1, 0, 0
0 0 0.,

Even in the case of discrete variables, it can be very difficult to
attain these ideal forms. The most useful result is that the K
nullvectors of a singular J are the gradients of K scalars—the
Casimirs.
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Summary for the case of continuous variables

Let the bracket be antisymmetric
{A.B} =—{B.A]
and obey the Jacobi identity
(A{B.CY}+ {BAC.AY + {C{AB)} =0
If the bracket is singular, there exist a set of Casimirs C such that
{C,B} =0
for any B. In particular,
{C.H} =0
The Casimir is conserved, for any Hamiltonian.

Lagrangian brackets are nonsingular.
Eulerian brackets are singular.
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Example: Find the Casimirs for the quasigeostrophic bracket

The QG equation

0A O0H
ffdxdy qJ(5§ (SC)

involves the bracket

{A B} ffdxdy qJ(gg gg)

where
q=C+h

is the potential vorticity.

If C 1s a Casimir,

oC OB oC \oB
{C B} ffdxdy qJ(éC 6@) ffd dy J((S;,q)g—O

for any B. Therefore, it must be true that

(5C _0
5C
which implies
oC
= F'
5~ Fla)

for some function F. It follows that

C = [[dxdy Flg)
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It is often difficult to compute the Casimirs, but they are usually
some combination of the potential vorticity and other conserved

scalars.
Example: the shallow water equations

In Eulerian variables, the dynamics is

ar

— -{F.H}

where
H =ffdx(§—hu2 + i’ +%gh2)
1s the Hamiltonian with u=(«,v), and

A,B 0A _0B 0B

{A B} ffd( S(u,v) " u V(Sh ou

1s the Poisson bracket, with

0(A,B) O0A OB OB A
S(u,v) CSu v Su by

The Casimirs are

C = [[ax hG(q)

q= (Vx _uy)h_l

where

(Prove this.)
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Poisson brackets allow a Hamiltonian formulation of fluid
mechanics that involves only the conventional Eulerian variables.

No particle labels or Clebsch potentials are required.

The Eulerian formulation is closed, but incomplete: It does not
keep track of where fluid particles go.

The Eulerian bracket is singular, and its “null vectors” are the
gradients of Casimirs. The Casimirs are conserved quantities
related to the particle-relabelling symmetry. This symmetry,
which is responsible for potential vorticity conservation, is also
responsible for the existence of a closed Eulerian dynamics.
What practical use are the Eulerian brackets?

Few applications depend on the precise form of the bracket.

Many applications make use of the Casimirs.

T.ectire 5. nace 7 of 17



Discrete system with a singular Poisson bracket

dii=JUﬁ

= P {Zi(?), i=1 to n}

Since J is singular,

Let
% =(Z§Z§z§)

be a fixed point, i.e.

dz’ - oH
— =J'—= at z=72
dt a7’ 0

If J were nonsingular this would imply

oH
§=0 at =2,

Since J is singular,

MG,
&zj

- =
oz k=1

at z =z,

The constants {Ak} depend on the fixed point. Thus every fixed
point is a stationary point of

I(z) = H(z) + 2%6”&)

for some {AL}.

T.ectire 5. nace K of 17



where

Let
z=2,+Az  where Az=(Azl,Az2,---,Az")

1s disturbance amplitude.

Define the pseudoenergy
AI(Az;ZO) = I(z0 + Az) — I(zo)

Pseudoenergy is a conserved quantity that vanishes at the fixed
point.

A Taylor-series expansion yields

9°1

Al(Azizy) = H, + Of(A2)') =47 (z0) Ac'az’ + O (Ac)')
where
9°1 oo
Hy =5 (2) A

Thus the pseudoenergy is second order in the disturbance-
amplitude Az.

This is not true of the energy!
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Pseudoenergy

91

97'07”

M(AZ;ZO) =H, + O((AZ)3) =3 (Zo) Az'Az’ + 0((AZ)3)

H, is the Hamiltonian for the linearized dynamics.

Proof:

d ; i ij JH
L ad) = P +0) Ty )

- [ e + 2 )" | [0+ () e | of (e

(3J" oH ; 0°H
— ot =
| 97" 07’ 97’9z

LAZm +0((Az)’)

But

Il oH  9Jv oc g’c™
m P m E)\’k P JJE)LI{ m o j
97" dz’ 7" 4 dz’ = " 97" o

Thus the linear dynamics is

oH,
A7’

%M=ﬂ@)

However H, is not an approximation to H.
L
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Stability

The linear dynamics is stable if

has definite sign.

For finite degrees of freedom, this means that the nonlinear
dynamics is stable too.

For infinite degrees of freedom, H, offers no help, but the form of
the pseudoenergy may suggest a bound.

Example: quasigeostrophic flow

0

J
Evij + J(p, Vi +h(x,y))
Casimir
C= fdxdyF(q), g=VyY+h
The steady solution ¥, (X) is a stationary point of
[y ()]= H+C = [[ax{3Vy Vy +F(q)}
Indeed

81= [[axi(-w + F'(q)) 6L} =0

implies
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Yo =F'(Vy, + h) = ¥(q,)
W is analogous to {A;}. Let

Y(x.t) =y (x)+y ' (x.1)
Y, 1s analogous to z,. Y 'is analogous to Az.

The pseudoenergy is

AL =I[y, +y']=1[y,]
= JJ ax{i V(w0 +w) V(o + 1) =4 Vi Vo + Flg +4') - F (o)}

-H,+0((w"))
where

H, = ff dX{%V¢'-V1/J'+%F"(qo)(VZUJ')Z}
which is indeed conserved by the linear dynamics,

Or,VZw|
ot

+ J(wo,vzw')+ J(zp',Vsz +h) =0

According to linear dynamics the steady state is stable if

d¥

F"(q0)==—>0 (Arnol’d’s theorem)
dq,
or
v __ 1
dqy, k> (Arnol’d’s second theorem)
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Nonlinear stability

Manipulate the pseudomomentum into a simpler form:

AL =1[yy + '] 1[y, ]
= [ ax{EV(wo+ ") V(wo + ") -3V, Vi + F(g0+a") - F(,)}
= [[ ax{s Vg V' +Vy, VY +F(go +4") - F(q0)}

( Gotq'
=f dX<%V1}J"V1/J'—IP(Qo)V2w‘+ f‘{’(q)dq

90

\'g

e q' )
= [[ ax{1Vy VY -W(q,)q '+ [ P(q, +G)dq
L 0 J

=ffdx<%Vw'°V1/J'+}{‘P(%+Q)—‘P(C]o)}dé

0

'

Assume
O<c<—=<c,
d

Then

[f ax{vwvy'saa)} s2a160) = 281(0) = [ ax{Vun Vo, res(ar )}

Define

| = [ ax{Vw'-Vy'se ()|

Then
o O < 2w O)F
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This approach to finite-amplitude stability seems to work well only
for systems with quadratic conservation laws, not e.g. for the
shallow water equations. (Ripa 1983, 1992; Shepherd 2002).

Quite apart from stability the concept of pseudoenergy (and its
generalizations) provides an important unifying framework for all
kinds of conservation laws.
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Example: Available internal energy

The general perfect-fluid equations conserve the energy

H=fffdx{%pv-v+pE(l,S)+pCI>(x)}
o
and the Casimirs

C=fffdpr(S,q)

Functional derivatives of the Hamiltonian:

JE(a,S
5—H=%V'V+E+£, p=- (25)
op 0 do
oH _ v
ov
oy gL
oS JS

Functional derivatives of the Casimir:

oC

“ —F-gF

Sp 1%
6—C=Vx(FVS)

v 1

oC

55 ~PFs=(Vxv) VF,
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Choose F such that
0C__OH  oC__oH o __oH
o dp v v 8 SS

for the chosen stationary state. If the stationary state is a state of
rest, then these equations have the solution

F(S)= —E(i,s)+iEa(l,So) - _E(L,S) _Po

Po Po Po Po Po
Therefore
I=H+C-= fffdx{%pv-V+pE(l,S)—pE(L,S)—£pO}
P Po Po
and

Al =1 [p(x),v(x),S(x)] ~1 [po(x),vo(x),SO(x)]

=fffdx{%pv-V+pE(%,S)—pE(L,S)—MPO}

Po Po

Suppose the fluid is homentropic. Let

p'(x,1) = p(x.1) - py(x), v'(x1) = v(x,1)

o

[ afinvei 7]

Po

Then

Alszde<r%va'-v'+%L3Eaa
( Po

The last term is available internal energy.
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Generalizations

General statement:

{z.G} = J’f;'(f =0 at z=g,
<

If G=H the mean flow has time-translation symmetry; this is the
case we have considered so far.

Suppose G=M, where M is the momentum in a particular direction.
That is, suppose that the mean flow is invariant in the direction

corresponding to M.

Then proceeding in exactly the same way as before, we conclude

that
I(z)=M(z)+ EAkC(k)
X

1s stationary at the mean state, and therefore
Al = I(ZO +Az)—](z0)

called pseudomomentum, is a second-order conserved quantity that
vanishes in the mean state.

If the mean state is both steady and invariant to a space translation,
then we may use

I(z)=H(z)+A,G(z E)\, c

for constructing stability bounds, and measures of available
energy.
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