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Eulerian Forms of Hamilton’s Principle

The fluid motion is a time-dependent map

x = x a,τ( )

from x-space to a-space.

Hamilton’s principle

δ dτ∫ da 1
2

∂x
∂τ

⋅
∂x
∂τ

− E
∂ x( )
∂ a( )

,S a( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − Φ x( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ ∫∫∫ = 0

requires that the action be stationary with respect to δx a,τ( ).
But each forward map corresponds to an inverse map

a = a x,t( )

Thus Hamilton’s principle is equivalent to

δ dt∫ dx
∂ a( )
∂ x( )

1
2

∂x
∂τ

⋅
∂x
∂τ

− E
∂ x( )
∂ a( )

,S a( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − Φ x( )

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ ∫∫∫ = 0

for arbitrary δa x,t( ) .
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To express

v ≡
∂x
∂τ

as an a-derivative, we use

∂
∂t

+ v ⋅∇
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ai = 0, i = 1, 2,3

Alternatively, we may treat the preceding equations as constraints.
Then Hamilton’s principle becomes

δ dt∫ dx
∂ a( )
∂ x( )

1
2 v ⋅ v − E

∂ x( )
∂ a( )

,S a( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − Φ x( ) − A ⋅

Da
Dt

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ ∫∫∫ = 0

for arbitrary δa(x,t), δv(x,t) and δA(x,t).
A is the Lagrange multiplier corresponding to the constraint that
defines v.  We choose c=S for simplicity.

In the same way, we may eliminate

ρ =
∂ a( )
∂ x( )

by attaching its time-derivative

∂ρ
∂t

+ ∇ ⋅ ρv( ) = 0

as another constraint.   We obtain…
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δ dt∫ dx 1
2 ρ v ⋅ v − ρ E

1

ρ
,S

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − ρΦ x( ) − ρA ⋅

Da
Dt

+ φ
∂ρ
∂t

+ ∇ ⋅ ρv( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

∫∫∫ = 0

for arbitrary variations in

ρ(x,t), v(x,t), S(x,t), A(x,t), a(x,t) and φ(x,t) (with c=S).

However, only 3 of our 4 constraints are independent.
Therefore, one constraint may be dropped.
If we drop the B-constraint, we have

δ dt∫ dx 1
2 ρ v ⋅ v − ρ E

1

ρ
,S

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − ρΦ x( ) − ρA

Da

Dt
− ρC

DS

Dt
− ρ

Dφ
Dt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

∫∫∫ = 0

for arbitrary variations in

ρ(x,t), v(x,t), S(x,t), A(x,t), a(x,t) and φ(x,t).

There is one more thing we can do to simplify the variational
principle.  We use

δv : v = A∇a + C∇S + ∇φ

to eliminate v itself.  After a little work, we obtain…
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δ dt∫ dx ρA
∂a

∂t
+ ρC

∂S

∂t
+ ρ

∂φ
∂t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + H∫∫∫

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0

where

H ρ,A,a,C,S,φ[ ] = dx 1
2 ρ v ⋅ v + ρ E

1

ρ
,S

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ρΦ x( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

∫∫∫
and

v ≡ A∇a + C∇S + ∇φ

This variational principle bears no resemblance to what we started
with!  But if we have not made a mistake, it must give us the
perfect-fluid equations.

To test it, we compute the variations

δA :
Da

Dt
= 0, δa :

DA

Dt
= 0

δC :
DS

Dt
= 0, δη :

DC

Dt
=

∂
∂S

E
1

ρ
,S

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≡ T

δφ :
∂ρ
∂t

+ ∇⋅ ρv( ) = 0

δρ : A
∂a

∂t
+ C

∂S

∂t
+

∂φ
∂t

+ 1
2 v ⋅ v + Φ + E +

p

ρ
= 0

p ≡ −
∂

∂α
E α,S( )
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Are these equations equivalent to the perfect fluid equations?

First note

ω = ∇ × v = ∇A × ∇a + ∇C × ∇S

so

ω×v = v ⋅ ∇A( )∇a − v ⋅ ∇a( )∇A + v ⋅ ∇C( )∇S − v ⋅ ∇S( )∇C

Then

∂v
∂t

=
∂A

∂t
∇a +

∂C

∂t
∇S + A∇

∂a

∂t
+ C∇

∂S

∂t
+ ∇

∂φ
∂t

=
∂A

∂t
∇a +

∂C

∂t
∇S −

∂a

∂t
∇A −

∂S

∂t
∇C + ∇ A

∂a

∂t
+ C

∂S

∂t
+

∂φ
∂t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= − v ⋅ ∇A( )∇a − v ⋅ ∇C − T( )∇S + v ⋅ ∇a( )∇A + v ⋅ ∇S( )∇C

− ∇ 1
2 v ⋅ v + Φ + E +

p

ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

which is equivalent to

∂v
∂t

=  - (ω × v)−
1

ρ
∇p − ∇Φ − ∇ 1

2 v ⋅ v( ) .

QED
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What has happened to the particle-relabeling symmetry?

It is present as a gauge symmetry.

In the Hamiltonian

H ρ,A,a,C,S,φ[ ] = dx 1
2 ρ v ⋅ v + ρ E

1

ρ
,S

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ρΦ x( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

∫∫∫

                              with       v ≡ A∇a + C∇S + ∇φ

The four potentials

A,  a,  C,  φ

appear only in the three components

u,  v,  w

of v.    Therefore, it is possible to vary the four potentials in a way
that is not detected by the Hamiltonian.  This leads to Ertel’s
theorem.
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Flows with special symmetry

Setting a=A=0 in the general form of Hamilton’s principle reduces
it to:

δ dt∫ dx ρC
∂S

∂t
+ ρ

∂φ
∂t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + H∫∫∫

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0

where

H ρ,C,S,φ[ ] = dx 1
2 ρ v ⋅ v + ρ E

1

ρ
,S

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ρΦ x( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

∫∫∫

and

v ≡ C∇S + ∇φ

Solutions of the results equations are a subset of the set of general
solutions to the perfect fluid equations;  they have vanishing
circulation

∫ v ⋅ dx = 0

on isentropic surfaces.  If the flow is homentropic we may also set
S=C=0.   Then the whole dynamics reduces to the variational
principle

δ dt∫ dx∫∫∫  ρ
∂φ
∂t

+ 1
2 ∇φ ⋅ ∇φ + E

1

ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Φ x( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 0

for irrotational flow

v = ∇φ
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Poisson bracket formulation

Return temporarily to the case of discrete variables.  The canonical
equations are:

dpi

dt
= −

∂H

∂qi

,
dqi

dt
= +

∂H

∂pi

, i = 1,2,K,N

Define the Poisson bracket:

A, B{ } ≡
∂A

∂qi

∂B

∂pi

−
∂A

∂pi

∂B

∂qi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i =1

N

∑

Then the canonical equations take the form:

dpi

dt
= pi, H{ },

dqi

dt
= qi , H{ }

More generally,

dF

dt
= F,H{ }

for any F.

Thus the whole dynamics has just two ingredients:

1.  The Hamiltonian H, a scalar function.

2.  The Poisson bracket, a bilinear operator.

These two objects are called geometrical objects because they have
important properties that survive transformation to new variables.
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Coordinate transformations

If                 z ≡ z1,z 2 ,K, z2N( ) ≡ q1, q2 ,K,qN , p1, p2 ,K, pN( )

The canonical equations take the form

dz i

dt
= J ij ∂H

∂z j

where

J =
0N IN

−I N 0N

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

The Poisson bracket takes the form

A, B{ } ≡
∂A

∂zi J ij ∂B

∂z j

The equations * are covariant with respect to coordinate
transformations

z i = z i z( )

That is

A,B{ } =
∂A

∂z m
J mn ∂B

∂z n

if  J  obeys the transformation rule for a contravariant tensor:

J mn =
∂z m

∂zi Jij ∂z n

∂z j
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Geometrical properties

The symplectic tensor J has the following properties

1.  nonsingularity:          det J ij( ) ≠ 0

2.  antisymmetry:            Jij = −J ji

3.  Jacobi property:         Jim ∂J jk

∂zm + J jm ∂J ki

∂zm + Jkm ∂J ij

∂z m = 0

These properties are called geometric properties, because they
hold in any system of coordinates.

To see this, realize that these 3 properties are trivially satisfied in
canonical coordinates, and that the properties themselves are
covariant.  The first property holds in the new coordinates only if
the coordinate transformation is itself nonsingular:

det
∂z i

∂z j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≠ 0
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In coordinate-free notation these same 3 properties may be written:

1.  nonsingularity:          A, B{ } ≠ 0

2.  antisymmetry:           A,B{ } = − B,A{ }

3.  Jacobi property     A, B,C{ }{ } + B, C,A{ }{ } + C, A,B{ }{ } = 0

General definition of a Hamiltonian system

A Hamiltonian system  consists of a scalar function H and a
Poisson bracket obeying the 3 properties above.

(The nonsingularity property is sometimes omitted with interesting
consequences.)
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Example:  Poisson bracket for irrotational flow

Recall:

δ dt∫ dx∫∫∫  φ
∂ρ
∂t

− H
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 0

where

H = dx∫∫∫  ρ 1
2 ∇φ ⋅ ∇φ + E

1

ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Φ x( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

This is in canonical form (in Eulerian variables).

Therefore

A,B{ } = dx∫∫∫ δA

δρ
δB

δφ
−

δA

δφ
δB

δρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Check:

∂
∂t

ρ x0( ) = ρ x0( ),H{ }

             = dx∫∫∫
δρ x0( )
δρ x( )

δH

δφ x( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

             = dx∫∫∫  δ x − x0( )  −∇ ⋅ ρ∇φ( )[ ]
             = −∇ ⋅ ρv( )[ ]  

x= x 0

QED
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Example:  Perfect fluid in one dimension.

This too takes the canonical form, but in Lagrangian coordinates.

Recall:

δ dτ∫ da∫  u a,τ( )
∂x a,τ( )

∂τ
  − H

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 0

where

H u a( ),x a( )[ ] = da∫ 1
2 u a( )2

+ E
dx

da

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Φ x a( )( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Thus

A, B{ } = da∫
δA

δx a( )
δB

δu a( )
−

δA

δu a( )
δB

δx a( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

The dynamics is
dF

dt
= F,H{ }
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Check:

∂x a,τ( )
∂τ

= x a( ),H{ } = da '∫
δx a( )
δx a '( )

δH

δu a'( )
−

δx a( )
δu a'( )

δH

δx a'( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= da'∫
δx a( )
δx a'( )

δH

δu a '( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Using

x a( ) = da∫ ' x a '( )δ a − a '( )      ⇒       
δx a( )
δx a '( )

= δ a − a '( )

and
δH

δu a'( )
= u a '( )

we obtain

∂x a,τ( )
∂τ

= da '∫ δ a − a'( )u a'( ) = u a,τ( )

Similarly

∂u a,τ( )
∂τ

= u a( ), H{ } = da '∫ −
δu a( )
δu a'( )

δH

δx a'( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

dx

da

∂p

∂x
−

∂Φ

∂x
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Example: one dimensional homentropic fluid in Eulerian
variables

The method will be to transform the bracket

A, B{ } = da∫
δA

δx a( )
δB

δu a( )
−

δA

δu a( )
δB

δx a( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

from Lagrangian coordinates

x a,τ( ),  u a,τ( )

to Eulerian coordinates
u x, t( ),  ρ x,t( )

Motivation:  The Hamiltonian takes the simplest form in Eulerian
variables.

We use the chain rule for functional derivatives:

δA

δx a( )
= dx '

δA

δu x'( )
δu x '( )
δx a( )

+
δA

δρ x'( )
δρ x '( )
δx a( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ ∫

δA

δu a( )
= dx '

δA

δu x'( )
δu x '( )
δu a( )

+
δA

δρ x'( )
δρ x '( )
δu a( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ ∫

To calculate the needed derivatives, write:

u x '( ) = da∫ u a( )δ a − a'( )
Thus
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δu x '( )
δx a( )

= 0 and
δu x '( )
δu a( )

= δ a − a '( )

Similarly

ρ x '( ) = dx∫ ρ x( )δ x − x '( ) = da∫ δ x a( ) − x a '( )( )

implies

δρ x '( )
δx a( )

= δ ' x − x '( ) and
δρ x '( )
δu a( )

= 0

Collecting results

δA

δx a( )
= dx '∫

δA

δρ x '( )
δ ' x − x '( ) =

∂
∂x

δA

δρ x( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

and

δA

δu a( )
= dx '∫

δA

δu x'( )
δ a − a'( ) = da '∫

1

ρ'

δA

δu x'( )
δ a − a '( ) =

1

ρ
δA

δu x( )

Therefore, finally,

A, B{ } = dx∫
∂
∂x

δA

δρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

δB

δu
−

∂
∂x

δB

δρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

δA

δu

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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Final result for 1d homentropic fluid

The dynamics is
dF

dt
= F,H{ }

where

A, B{ } = dx∫
∂
∂x

δA

δρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

δB

δu
−

∂
∂x

δB

δρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

δA

δu

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

and

H = dx ρ x( ) 1
2 u x( )2

+ E
1

ρ x( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Φ x( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∫

Check:

δH

δρ x( )
= 1

2 u2 + E + Φ x( ) −
1

ρ
E '

δH

δu x( )
= ρu

δρ x( )
δρ x'( )

= δ x − x'( ) and
δρ x( )
δu x '( )

= 0

∂
∂t

ρ x( ) = ρ, H{ } = dx '∫
∂

∂x '
δ x − x '( )( ) ρu x '( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

∂
∂x

ρu( )         OK
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General 3d perfect fluid

A,B{ } = dx∫∫∫ [ ∇
δA

δρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅

δB

δv
− ∇

δB

δρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅

δA

δv
+

∇ × v
ρ

⋅
δA

δv
×

δB

δv

+
∇S

ρ
⋅

δA

δv
δB

δS
−

δB

δv
δA

δS

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ]

(Morrison and Greene)

This result is somewhat tedious to work out by transforming from
the canonical form (as we just did for the 1d case).

In fact, sometimes it is better to guess the Poisson bracket, and
then verify your guess a posteriori.
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Example of guessing:

Poisson bracket for the quasigeostrophic equation

∂
∂t

∇2ψ + J ψ ,∇2ψ + h x, y( )( ) = 0

states that the potential vorticity

q = ζ + h = ∇2ψ + h

Let
A q[ ]

be any functional of q. Then

dA
dt

= dx dy∫∫
δA
δζ

∂ζ
∂t

= − dx dy∫∫
δA
δζ

J ψ ,ζ + h( )

= dx dy∫∫ q J ψ ,
δA
δζ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

On the other hand

H = dx dy∫∫ 1
2 ∇ψ ⋅ ∇ψ

implies that

δH = dx dy∫∫ ∇ψ ⋅∇δψ = − dx dy∫∫ ψ δζ
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Hence
δH

δζ
= −ψ

and our evolution equation takes the form

dA

dt
= dx dy∫∫ q J

δA

δζ
,
δH

δζ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

This fits the Hamiltonian form

dA

dt
= A, H{ }

if

A, B{ } = dx dy∫∫ q J
δA

δζ
,
δB

δζ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

This bracket is obviously symmetric.  With some work, it can be
shown to obey the Jacobi identity.  However, like almost all
Eulerian brackets it is singular.  In fact,

A,C{ } = 0
for all C of the form

C = dx∫∫ dy F q( )

Much more about singular Poisson brackets!
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Interesting fact

The quasigeostrophic bracket is not unique.

We may use

dA

dt
= A, H{ }

with

H = dx dy∫∫ 1
2 ∇ψ ⋅ ∇ψ

and

A, B{ } = dx dy∫∫ q J
δA

δζ
,
δB

δζ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

OR

dA

dt
= A,Z{ }

with

Z = dx dy∫∫ 1
2 q2

and

A,B{ } = dx dy∫∫ ψ J
δA

δζ
,
δB

δζ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 


