Eulerian Forms of Hamilton's Principle

The fluid motion is a time-dependent map

$$
\mathbf{x}=\mathbf{x}(\mathbf{a}, \tau)
$$

from \mathbf{x}-space to \mathbf{a}-space.
Hamilton's principle

$$
\delta \int d \tau \iiint d \mathbf{a}\left\{\frac{1}{2} \frac{\partial \mathbf{x}}{\partial \tau} \cdot \frac{\partial \mathbf{x}}{\partial \tau}-E\left(\frac{\partial(\mathbf{x})}{\partial(\mathbf{a})}, S(\mathbf{a})\right)-\Phi(\mathbf{x})\right\}=0
$$

requires that the action be stationary with respect to $\delta \mathbf{x}(\mathbf{a}, \tau)$. But each forward map corresponds to an inverse map

$$
\mathbf{a}=\mathbf{a}(\mathbf{x}, t)
$$

Thus Hamilton's principle is equivalent to

$$
\delta \int d t \iiint d \mathbf{x} \frac{\partial(\mathbf{a})}{\partial(\mathbf{x})}\left\{\frac{1}{2} \frac{\partial \mathbf{x}}{\partial \tau} \cdot \frac{\partial \mathbf{x}}{\partial \tau}-E\left(\frac{\partial(\mathbf{x})}{\partial(\mathbf{a})}, S(\mathbf{a})\right)-\Phi(\mathbf{x})\right\}=0
$$

for arbitrary $\delta \mathbf{a}(\mathbf{x}, t)$.

To express

$$
\mathbf{v} \equiv \frac{\partial \mathbf{x}}{\partial \tau}
$$

as an a-derivative, we use

$$
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla\right) a_{i}=0, \quad i=1,2,3
$$

Alternatively, we may treat the preceding equations as constraints. Then Hamilton's principle becomes

$$
\delta \int d t \iiint d \mathbf{x} \frac{\partial(\mathbf{a})}{\partial(\mathbf{x})}\left\{\frac{1}{2} \mathbf{v} \cdot \mathbf{v}-E\left(\frac{\partial(\mathbf{x})}{\partial(\mathbf{a})}, S(\mathbf{a})\right)-\Phi(\mathbf{x})-\mathbf{A} \cdot \frac{D \mathbf{a}}{D t}\right\}=0
$$

for arbitrary $\delta \mathbf{a}(\mathbf{x}, t), \delta \mathbf{v}(\mathbf{x}, t)$ and $\delta \mathbf{A}(\mathbf{x}, t)$.
\mathbf{A} is the Lagrange multiplier corresponding to the constraint that defines \mathbf{v}. We choose $c=S$ for simplicity.

In the same way, we may eliminate

$$
\rho=\frac{\partial(\mathbf{a})}{\partial(\mathbf{x})}
$$

by attaching its time-derivative

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

as another constraint. We obtain...
$\delta \int d t \iiint d \mathbf{x}\left\{\frac{1}{2} \rho \mathbf{v} \cdot \mathbf{v}-\rho E\left(\frac{1}{\rho}, S\right)-\rho \Phi(\mathbf{x})-\rho \mathbf{A} \cdot \frac{D \mathbf{a}}{D t}+\phi\left(\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})\right)\right\}=0$
for arbitrary variations in
$\rho(\mathbf{x}, t), \mathbf{v}(\mathbf{x}, t), S(\mathbf{x}, t), \mathbf{A}(\mathbf{x}, t), \mathbf{a}(\mathbf{x}, t)$ and $\phi(\mathbf{x}, t)$ (with $c=S)$.
However, only 3 of our 4 constraints are independent.
Therefore, one constraint may be dropped.
If we drop the B-constraint, we have
$\delta \int d t \iiint d \mathbf{x}\left\{\frac{1}{2} \rho \mathbf{v} \cdot \mathbf{v}-\rho E\left(\frac{1}{\rho}, S\right)-\rho \Phi(\mathbf{x})-\rho A \frac{D a}{D t}-\rho C \frac{D S}{D t}-\rho \frac{D \phi}{D t}\right\}=0$
for arbitrary variations in
$\rho(\mathbf{x}, t), \mathbf{v}(\mathbf{x}, t), S(\mathbf{x}, t), A(\mathbf{x}, t), a(\mathbf{x}, t)$ and $\phi(\mathbf{x}, t)$.

There is one more thing we can do to simplify the variational principle. We use
$\delta \mathbf{v}: \quad \mathbf{v}=A \nabla a+C \nabla S+\nabla \phi$
to eliminate \mathbf{v} itself. After a little work, we obtain...

$$
\delta \int d t\left[\iiint d \mathbf{x}\left(\rho A \frac{\partial a}{\partial t}+\rho C \frac{\partial S}{\partial t}+\rho \frac{\partial \phi}{\partial t}\right)+H\right]=0
$$

where

$$
H[\rho, A, a, C, S, \phi]=\iiint d \mathbf{x}\left\{\frac{1}{2} \rho \mathbf{v} \cdot \mathbf{v}+\rho E\left(\frac{1}{\rho}, S\right)+\rho \Phi(\mathbf{x})\right\}
$$

and

$$
\mathbf{v} \equiv A \nabla a+C \nabla S+\nabla \phi
$$

This variational principle bears no resemblance to what we started with! But if we have not made a mistake, it must give us the perfect-fluid equations.

To test it, we compute the variations
$\delta A: \quad \frac{D a}{D t}=0, \quad \delta a: \quad \frac{D A}{D t}=0$
$\delta C: \quad \frac{D S}{D t}=0, \quad \delta \eta: \quad \frac{D C}{D t}=\frac{\partial}{\partial S} E\left(\frac{1}{\rho}, S\right) \equiv T$
$\delta \phi: \quad \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0$
$\delta \rho: \quad A \frac{\partial a}{\partial t}+C \frac{\partial S}{\partial t}+\frac{\partial \phi}{\partial t}+\frac{1}{2} \mathbf{v} \cdot \mathbf{v}+\Phi+E+\frac{p}{\rho}=0$

$$
p \equiv-\frac{\partial}{\partial \alpha} E(\alpha, S)
$$

Are these equations equivalent to the perfect fluid equations?
First note

$$
\omega=\nabla \times \mathbf{v}=\nabla A \times \nabla a+\nabla C \times \nabla S
$$

So

$$
\mathbf{\omega} \times \mathbf{v}=(\mathbf{v} \cdot \nabla A) \nabla a-(\mathbf{v} \cdot \nabla a) \nabla A+(\mathbf{v} \cdot \nabla C) \nabla S-(\mathbf{v} \cdot \nabla S) \nabla C
$$

Then

$$
\begin{aligned}
& \frac{\partial \mathbf{v}}{\partial t}=\frac{\partial A}{\partial t} \nabla a+\frac{\partial C}{\partial t} \nabla S+A \nabla \frac{\partial a}{\partial t}+C \nabla \frac{\partial S}{\partial t}+\nabla \frac{\partial \phi}{\partial t} \\
& =\frac{\partial A}{\partial t} \nabla a+\frac{\partial C}{\partial t} \nabla S-\frac{\partial a}{\partial t} \nabla A-\frac{\partial S}{\partial t} \nabla C+\nabla\left(A \frac{\partial a}{\partial t}+C \frac{\partial S}{\partial t}+\frac{\partial \phi}{\partial t}\right) \\
& =-(\mathbf{v} \cdot \nabla A) \nabla a-(\mathbf{v} \cdot \nabla C-T) \nabla S+(\mathbf{v} \cdot \nabla a) \nabla A+(\mathbf{v} \cdot \nabla S) \nabla C \\
& \quad-\nabla\left(\frac{1}{2} \mathbf{v} \cdot \mathbf{v}+\Phi+E+\frac{p}{\rho}\right)
\end{aligned}
$$

which is equivalent to

$$
\frac{\partial \mathbf{v}}{\partial t}=-(\boldsymbol{\omega} \times \mathbf{v})-\frac{1}{\rho} \nabla p-\nabla \Phi-\nabla\left(\frac{1}{2} \mathbf{v} \cdot \mathbf{v}\right) .
$$

QED

What has happened to the particle-relabeling symmetry?
It is present as a gauge symmetry.

In the Hamiltonian

$$
\begin{aligned}
& H[\rho, A, a, C, S, \phi]=\iiint d \mathbf{x}\left\{\frac{1}{2} \rho \mathbf{v} \cdot \mathbf{v}+\rho E\left(\frac{1}{\rho}, S\right)+\rho \Phi(\mathbf{x})\right\} \\
& \text { with } \quad \mathbf{v} \equiv A \nabla a+C \nabla S+\nabla \phi
\end{aligned}
$$

The four potentials

$$
A, a, C, \phi
$$

appear only in the three components

$$
u, v, w
$$

of \mathbf{v}. Therefore, it is possible to vary the four potentials in a way that is not detected by the Hamiltonian. This leads to Ertel's theorem.

Flows with special symmetry

Setting $a=A=0$ in the general form of Hamilton's principle reduces it to:

$$
\delta \int d t\left[\iiint d \mathbf{x}\left(\rho C \frac{\partial S}{\partial t}+\rho \frac{\partial \phi}{\partial t}\right)+H\right]=0
$$

where

$$
H[\rho, C, S, \phi]=\iiint d \mathbf{x}\left\{\frac{1}{2} \rho \mathbf{v} \cdot \mathbf{v}+\rho E\left(\frac{1}{\rho}, S\right)+\rho \Phi(\mathbf{x})\right\}
$$

and

$$
\mathbf{v} \equiv C \nabla S+\nabla \phi
$$

Solutions of the results equations are a subset of the set of general solutions to the perfect fluid equations; they have vanishing circulation

$$
\oint \mathbf{v} \cdot d \mathbf{x}=0
$$

on isentropic surfaces. If the flow is homentropic we may also set $S=C=0$. Then the whole dynamics reduces to the variational principle

$$
\delta \int d t \iiint d \mathbf{x} \rho\left\{\frac{\partial \phi}{\partial t}+\frac{1}{2} \nabla \phi \cdot \nabla \phi+E\left(\frac{1}{\rho}\right)+\Phi(\mathbf{x})\right\}=0
$$

for irrotational flow

$$
\mathbf{v}=\nabla \phi
$$

Poisson bracket formulation

Return temporarily to the case of discrete variables. The canonical equations are:

$$
\frac{d p_{i}}{d t}=-\frac{\partial H}{\partial q_{i}}, \quad \frac{d q_{i}}{d t}=+\frac{\partial H}{\partial p_{i}}, \quad i=1,2, \ldots, N
$$

Define the Poisson bracket:

$$
\{A, B\} \equiv \sum_{i=1}^{N}\left(\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right)
$$

Then the canonical equations take the form:

$$
\frac{d p_{i}}{d t}=\left\{p_{i}, H\right\}, \quad \frac{d q_{i}}{d t}=\left\{q_{i}, H\right\}
$$

More generally,

$$
\frac{d F}{d t}=\{F, H\}
$$

for any F.

Thus the whole dynamics has just two ingredients:

1. The Hamiltonian H, a scalar function.
2. The Poisson bracket, a bilinear operator.

These two objects are called geometrical objects because they have important properties that survive transformation to new variables.

Coordinate transformations

If

$$
z \equiv\left(z^{1}, z^{2}, \ldots, z^{2 N}\right) \equiv\left(q_{1}, q_{2}, \ldots, q_{N}, p_{1}, p_{2}, \ldots, p_{N}\right)
$$

The canonical equations take the form

$$
\frac{d z^{i}}{d t}=J^{i j} \frac{\partial H}{\partial z^{j}}
$$

where

$$
J=\left[\begin{array}{cc}
0_{N} & I_{N} \\
-I_{N} & 0_{N}
\end{array}\right]
$$

The Poisson bracket takes the form

$$
\{A, B\} \equiv \frac{\partial A}{\partial z^{i}} J^{i j} \frac{\partial B}{\partial z^{j}}
$$

The equations * are covariant with respect to coordinate transformations

$$
\bar{z}^{i}=\bar{z}^{i}(z)
$$

That is

$$
\{A, B\}=\frac{\partial A}{\partial \bar{z}^{m}} \bar{J}^{m n} \frac{\partial B}{\partial \bar{z}^{n}}
$$

if J obeys the transformation rule for a contravariant tensor:

$$
\bar{J}^{m n}=\frac{\partial \bar{z}^{m}}{\partial z^{i}} J^{i j} \frac{\partial \bar{z}^{n}}{\partial z^{j}}
$$

Geometrical properties

The symplectic tensor J has the following properties

1. nonsingularity: $\operatorname{det}\left(J^{i j}\right) \neq 0$
2. antisymmetry: $\quad J^{i j}=-J^{j i}$
3. Jacobi property: $\quad J^{i m} \frac{\partial J^{j k}}{\partial z^{m}}+J^{j m} \frac{\partial J^{k i}}{\partial z^{m}}+J^{k m} \frac{\partial J^{i j}}{\partial z^{m}}=0$

These properties are called geometric properties, because they hold in any system of coordinates.

To see this, realize that these 3 properties are trivially satisfied in canonical coordinates, and that the properties themselves are covariant. The first property holds in the new coordinates only if the coordinate transformation is itself nonsingular:

$$
\operatorname{det}\left(\frac{\partial \bar{z}^{i}}{\partial z^{j}}\right) \neq 0
$$

In coordinate-free notation these same 3 properties may be written:

1. nonsingularity: $\quad\{A, B\} \neq 0$
2. antisymmetry: $\quad\{A, B\}=-\{B, A\}$
3. Jacobi property $\quad\{A,\{B, C\}\}+\{B,\{C, A\}\}+\{C,\{A, B\}\}=0$

General definition of a Hamiltonian system

A Hamiltonian system consists of a scalar function H and a Poisson bracket obeying the 3 properties above.
(The nonsingularity property is sometimes omitted with interesting consequences.)

Example: Poisson bracket for irrotational flow

Recall:

$$
\delta \int d t\left\{\iiint d \mathbf{x} \phi \frac{\partial \rho}{\partial t}-H\right\}=0
$$

where

$$
H=\iiint d \mathbf{x} \rho\left\{\frac{1}{2} \nabla \phi \cdot \nabla \phi+E\left(\frac{1}{\rho}\right)+\Phi(\mathbf{x})\right\}
$$

This is in canonical form (in Eulerian variables).

Therefore

$$
\{A, B\}=\iiint d \mathbf{x}\left(\frac{\delta A}{\delta \rho} \frac{\delta B}{\delta \phi}-\frac{\delta A}{\delta \phi} \frac{\delta B}{\delta \rho}\right)
$$

Check:

$$
\begin{aligned}
\frac{\partial}{\partial t} \rho\left(\mathbf{x}_{0}\right) & =\left\{\rho\left(\mathbf{x}_{0}\right), H\right\} \\
& =\iiint d \mathbf{x}\left(\frac{\delta \rho\left(\mathbf{x}_{0}\right)}{\delta \rho(\mathbf{x})} \frac{\delta H}{\delta \phi(\mathbf{x})}\right) \\
& =\iiint d \mathbf{x} \delta\left(\mathbf{x}-\mathbf{x}_{0}\right)[-\nabla \cdot(\rho \nabla \phi)] \\
& =\left.[-\nabla \cdot(\rho \mathbf{v})]\right|_{\mathbf{x}=\mathbf{x}_{0}}
\end{aligned}
$$

QED

Example: Perfect fluid in one dimension.

This too takes the canonical form, but in Lagrangian coordinates.

Recall:

$$
\delta \int d \tau\left\{\int d a u(a, \tau) \frac{\partial x(a, \tau)}{\partial \tau}-H\right\}=0
$$

where

$$
H[u(a), x(a)]=\int d a\left\{\frac{1}{2} u(a)^{2}+E\left(\frac{d x}{d a}\right)+\Phi(x(a))\right\}
$$

Thus

$$
\{A, B\}=\int d a\left(\frac{\delta A}{\delta x(a)} \frac{\delta B}{\delta u(a)}-\frac{\delta A}{\delta u(a)} \frac{\delta B}{\delta x(a)}\right)
$$

The dynamics is

$$
\frac{d F}{d t}=\{F, H\}
$$

Check:

$$
\begin{aligned}
\frac{\partial x(a, \tau)}{\partial \tau} & =\{x(a), H\}=\int d a^{\prime}\left(\frac{\delta x(a)}{\delta x\left(a^{\prime}\right)} \frac{\delta H}{\delta u\left(a^{\prime}\right)}-\frac{\delta x(a)}{\delta u\left(a^{\prime}\right)} \frac{\delta H}{\delta x\left(a^{\prime}\right)}\right) \\
& =\int d a^{\prime}\left(\frac{\delta x(a)}{\delta x\left(a^{\prime}\right)} \frac{\delta H}{\delta u\left(a^{\prime}\right)}\right)
\end{aligned}
$$

Using

$$
x(a)=\int d a^{\prime} x\left(a^{\prime}\right) \delta\left(a-a^{\prime}\right) \quad \Rightarrow \quad \frac{\delta x(a)}{\delta x\left(a^{\prime}\right)}=\delta\left(a-a^{\prime}\right)
$$

and

$$
\frac{\delta H}{\delta u\left(a^{\prime}\right)}=u\left(a^{\prime}\right)
$$

we obtain

$$
\frac{\partial x(a, \tau)}{\partial \tau}=\int d a^{\prime} \delta\left(a-a^{\prime}\right) u\left(a^{\prime}\right)=u(a, \tau)
$$

Similarly

$$
\frac{\partial u(a, \tau)}{\partial \tau}=\{u(a), H\}=\int d a^{\prime}\left(-\frac{\delta u(a)}{\delta u\left(a^{\prime}\right)} \frac{\delta H}{\delta x\left(a^{\prime}\right)}\right)=-\frac{d x}{d a} \frac{\partial p}{\partial x}-\frac{\partial \Phi}{\partial x}
$$

Example: one dimensional homentropic fluid in Eulerian variables

The method will be to transform the bracket

$$
\{A, B\}=\int d a\left(\frac{\delta A}{\delta x(a)} \frac{\delta B}{\delta u(a)}-\frac{\delta A}{\delta u(a)} \frac{\delta B}{\delta x(a)}\right)
$$

from Lagrangian coordinates

$$
x(a, \tau), u(a, \tau)
$$

to Eulerian coordinates

$$
u(x, t), \rho(x, t)
$$

Motivation: The Hamiltonian takes the simplest form in Eulerian variables.

We use the chain rule for functional derivatives:

$$
\begin{aligned}
& \frac{\delta A}{\delta x(a)}=\int d x^{\prime}\left\{\frac{\delta A}{\delta u\left(x^{\prime}\right)} \frac{\delta u\left(x^{\prime}\right)}{\delta x(a)}+\frac{\delta A}{\delta \rho\left(x^{\prime}\right)} \frac{\delta \rho\left(x^{\prime}\right)}{\delta x(a)}\right\} \\
& \frac{\delta A}{\delta u(a)}=\int d x^{\prime}\left\{\frac{\delta A}{\delta u\left(x^{\prime}\right)} \frac{\delta u\left(x^{\prime}\right)}{\delta u(a)}+\frac{\delta A}{\delta \rho\left(x^{\prime}\right)} \frac{\delta \rho\left(x^{\prime}\right)}{\delta u(a)}\right\}
\end{aligned}
$$

To calculate the needed derivatives, write:

$$
u\left(x^{\prime}\right)=\int d a u(a) \delta\left(a-a^{\prime}\right)
$$

Thus

$$
\frac{\delta u\left(x^{\prime}\right)}{\delta x(a)}=0 \quad \text { and } \quad \frac{\delta u\left(x^{\prime}\right)}{\delta u(a)}=\delta\left(a-a^{\prime}\right)
$$

Similarly

$$
\rho\left(x^{\prime}\right)=\int d x \rho(x) \delta\left(x-x^{\prime}\right)=\int d a \delta\left(x(a)-x\left(a^{\prime}\right)\right)
$$

implies

$$
\frac{\delta \rho\left(x^{\prime}\right)}{\delta x(a)}=\delta^{\prime}\left(x-x^{\prime}\right) \quad \text { and } \quad \frac{\delta \rho\left(x^{\prime}\right)}{\delta u(a)}=0
$$

Collecting results

$$
\frac{\delta A}{\delta x(a)}=\int d x^{\prime} \frac{\delta A}{\delta \rho\left(x^{\prime}\right)} \delta^{\prime}\left(x-x^{\prime}\right)=\frac{\partial}{\partial x}\left(\frac{\delta A}{\delta \rho(x)}\right)
$$

and

$$
\frac{\delta A}{\delta u(a)}=\int d x^{\prime} \frac{\delta A}{\delta u\left(x^{\prime}\right)} \delta\left(a-a^{\prime}\right)=\int d a^{\prime} \frac{1}{\rho^{\prime}} \frac{\delta A}{\delta u\left(x^{\prime}\right)} \delta\left(a-a^{\prime}\right)=\frac{1}{\rho} \frac{\delta A}{\delta u(x)}
$$

Therefore, finally,

$$
\{A, B\}=\int d x\left(\frac{\partial}{\partial x}\left(\frac{\delta A}{\delta \rho}\right) \frac{\delta B}{\delta u}-\frac{\partial}{\partial x}\left(\frac{\delta B}{\delta \rho}\right) \frac{\delta A}{\delta u}\right)
$$

Final result for 1d homentropic fluid

The dynamics is

$$
\frac{d F}{d t}=\{F, H\}
$$

where

$$
\{A, B\}=\int d x\left(\frac{\partial}{\partial x}\left(\frac{\delta A}{\delta \rho}\right) \frac{\delta B}{\delta u}-\frac{\partial}{\partial x}\left(\frac{\delta B}{\delta \rho}\right) \frac{\delta A}{\delta u}\right)
$$

and

$$
H=\int d x \rho(x)\left(\frac{1}{2} u(x)^{2}+E\left(\frac{1}{\rho(x)}\right)+\Phi(x)\right)
$$

Check:

$$
\begin{gathered}
\frac{\delta H}{\delta \rho(x)}=\frac{1}{2} u^{2}+E+\Phi(x)-\frac{1}{\rho} E^{\prime} \\
\frac{\delta H}{\delta u(x)}=\rho u \\
\frac{\delta \rho(x)}{\delta \rho\left(x^{\prime}\right)}=\delta\left(x-x^{\prime}\right) \quad \text { and } \quad \frac{\delta \rho(x)}{\delta u\left(x^{\prime}\right)}=0 \\
\frac{\partial}{\partial t} \rho(x)=\{\rho, H\}=\int d x^{\prime}\left(\frac{\partial}{\partial x^{\prime}}\left(\delta\left(x-x^{\prime}\right)\right) \rho u\left(x^{\prime}\right)\right)=-\frac{\partial}{\partial x}(\rho u) \quad \text { OK }
\end{gathered}
$$

General 3d perfect fluid

$$
\begin{array}{r}
\{A, B\}=\iiint d \mathbf{x}\left[\nabla\left(\frac{\delta A}{\delta \rho}\right) \cdot \frac{\delta B}{\delta \mathbf{v}}-\nabla\left(\frac{\delta B}{\delta \rho}\right) \cdot \frac{\delta A}{\delta \mathbf{v}}+\frac{\nabla \times \mathbf{v}}{\rho} \cdot \frac{\delta A}{\delta \mathbf{v}} \times \frac{\delta B}{\delta \mathbf{v}}\right. \\
\left.+\frac{\nabla S}{\rho} \cdot\left(\frac{\delta A}{\delta \mathbf{v}} \frac{\delta B}{\delta S}-\frac{\delta B}{\delta \mathbf{v}} \frac{\delta A}{\delta S}\right)\right] \\
\text { (Morrison and Greene) }
\end{array}
$$

This result is somewhat tedious to work out by transforming from the canonical form (as we just did for the 1d case).

In fact, sometimes it is better to guess the Poisson bracket, and then verify your guess a posteriori.

Example of guessing:

Poisson bracket for the quasigeostrophic equation

$$
\frac{\partial}{\partial t} \nabla^{2} \psi+J\left(\psi, \nabla^{2} \psi+h(x, y)\right)=0
$$

states that the potential vorticity

$$
q=\zeta+h=\nabla^{2} \psi+h
$$

Let

$$
A[q]
$$

be any functional of q. Then

$$
\begin{aligned}
\frac{d A}{d t} & =\iint d x d y \frac{\delta A}{\delta \zeta} \frac{\partial \zeta}{\partial t}=-\iint d x d y \frac{\delta A}{\delta \zeta} J(\psi, \zeta+h) \\
& =\iint d x d y q J\left(\psi, \frac{\delta A}{\delta \zeta}\right)
\end{aligned}
$$

On the other hand

$$
H=\iint d x d y \frac{1}{2} \nabla \psi \cdot \nabla \psi
$$

implies that

$$
\delta H=\iint d x d y \nabla \psi \cdot \nabla \delta \psi=-\iint d x d y \psi \delta \zeta
$$

Hence

$$
\frac{\delta H}{\delta \xi}=-\psi
$$

and our evolution equation takes the form

$$
\frac{d A}{d t}=\iint d x d y q J\left(\frac{\delta A}{\delta \xi}, \frac{\delta H}{\delta \zeta}\right)
$$

This fits the Hamiltonian form

$$
\frac{d A}{d t}=\{A, H\}
$$

if

$$
\{A, B\}=\iint d x d y \text { q } J\left(\frac{\delta A}{\delta \zeta}, \frac{\delta B}{\delta \zeta}\right)
$$

This bracket is obviously symmetric. With some work, it can be shown to obey the Jacobi identity. However, like almost all Eulerian brackets it is singular. In fact,

$$
\{A, C\}=0
$$

for all C of the form

$$
C=\iint d x d y F(q)
$$

Much more about singular Poisson brackets!

Interesting fact

The quasigeostrophic bracket is not unique.
We may use

$$
\frac{d A}{d t}=\{A, H\}
$$

with

$$
H=\iint d x d y \frac{1}{2} \nabla \psi \cdot \nabla \psi
$$

and

$$
\{A, B\}=\iint d x d y \text { q } J\left(\frac{\delta A}{\delta \zeta}, \frac{\delta B}{\delta \zeta}\right)
$$

OR

$$
\frac{d A}{d t}=\{A, Z\}
$$

with

$$
Z=\iint d x d y \frac{1}{2} q^{2}
$$

and

$$
\{A, B\}=\iint d x d y \psi J\left(\frac{\delta A}{\delta \zeta}, \frac{\delta B}{\delta \zeta}\right)
$$

