Mean flows and disturbances

Lagrangian for a one-dimensional fluid:

$$
\mathrm{L}[x(a, \tau)] \equiv \iint d \tau d a\left\{\frac{1}{2}\left(\frac{\partial x}{\partial \tau}\right)^{2}-E\left(\frac{\partial x}{\partial a}\right)\right\}
$$

Hamilton's principle:

$$
\int \mathrm{d} \tau \quad \mathrm{~L}[x(a, \tau)]=0 \quad \text { for arbitrary } \quad \delta x(a, \tau)
$$

Regard $x(a, \tau)$ as a time-dependent mapping:

Now define the composite mapping

$$
x(a, \tau)=X(a, \tau)+\xi(X, T)
$$

$X(a, \tau)$ is the mean flow.
$\xi(X, T)$ is the displacement of the fluid particle labeled by a from the location it would have if it had moved with the mean flow.

Rewrite the Lagrangian in terms of $X(a, \tau)$ and $\xi(X, T)$.

$$
\begin{gathered}
\mathrm{L}[x(a, \tau)] \equiv \iint d \tau d a\left\{\frac{1}{2}\left(\frac{\partial x}{\partial \tau}\right)^{2}-E\left(\frac{\partial x}{\partial a}\right)\right\} \\
x(a, \tau)=X(a, \tau)+\xi(X, T)
\end{gathered}
$$

Rewrite the time derivative as

$$
\frac{\partial x}{\partial \tau}=\frac{\partial X}{\partial \tau}+\left(\frac{\partial}{\partial T}+\frac{\partial X}{\partial \tau} \frac{\partial}{\partial X}\right) \xi(X, T)
$$

that is

$$
u=U+D \xi
$$

where

$$
U \equiv \frac{\partial X}{\partial \tau} \quad \text { and } \quad D \equiv \frac{\partial}{\partial T}+U \frac{\partial}{\partial X}
$$

Rewrite the Jacobian as

$$
\frac{\partial x}{\partial a}=\frac{\partial}{\partial a}(X(a, \tau)+\xi(X, T))=\frac{\partial X}{\partial a}+\frac{\partial \xi}{\partial X} \frac{\partial X}{\partial a}=V+V \frac{\partial \xi}{\partial X}
$$

where

$$
V \equiv \frac{\partial X}{\partial a}
$$

The Lagrangian becomes

$$
\mathrm{L}[X(a, \tau), \xi(X, T)]=\iint d \tau d a\left\{\frac{1}{2}(U+D \xi)^{2}-E\left(V+V \frac{\partial \xi}{\partial X}\right)\right\}
$$

$$
\mathrm{L}[X(a, \tau), \xi(X, T)]=\iint d \tau d a\left\{\frac{1}{2}(U+D \xi)^{2}-E\left(V+V \frac{\partial \xi}{\partial X}\right)\right\}
$$

Hamilton's principle:
$\int \mathrm{d} \tau \mathrm{L}[X(a, \tau), \xi(X, T)]=0 \quad$ for arbitrary $\quad \delta X(a, \tau), \delta \xi(X, T)$
Yields two dynamical equations, reflecting the many possible ways of dividing a single flow into a mean flow and a disturbance.

Suppose the disturbance takes the form of a slowly-varying wave:

$$
\begin{aligned}
\xi(X, T)= & A(X, T) \cos \theta(X, T) \\
k & \equiv \frac{\partial \theta}{\partial X} \\
\omega & \equiv-\frac{\partial \theta}{\partial T}
\end{aligned}
$$

Assume also that A is small. Then

$$
\begin{gathered}
E\left(V+V \frac{\partial \xi}{\partial X}\right)=E(V)+E^{\prime}(V) V \frac{\partial \xi}{\partial X}+\frac{1}{2} E^{\prime \prime}(V)\left(V \frac{\partial \xi}{\partial X}\right)^{2}+O\left(\xi^{3}\right) \\
\mathrm{L}=\mathrm{L}_{1}[X(a, \tau)]+\mathrm{L}_{2}[X(a, \tau), A(X, T), \theta(X, T)] \\
\mathrm{L}_{1}=\iint d \tau d a\left\{\frac{1}{2} U^{2}-E(V)\right\} \\
\mathrm{L}_{2}=\iint d \tau d a\left\{U D \xi+\frac{1}{2}(D \xi)^{2}-E^{\prime}(V) V \frac{\partial \xi}{\partial X}-\frac{1}{2} E^{\prime \prime}(V)\left(V \frac{\partial \xi}{\partial X}\right)^{2}\right\}
\end{gathered}
$$

Use the slowly varying approximation to simplify

$$
\mathrm{L}_{2}=\iint d \tau d a\left\{U D \xi+\frac{1}{2}(D \xi)^{2}-E^{\prime}(V) V \frac{\partial \xi}{\partial X}-\frac{1}{2} E^{\prime \prime}(V)\left(V \frac{\partial \xi}{\partial X}\right)^{2}\right\}
$$

e.g.

$$
\begin{aligned}
\mathrm{L}_{2} & =\iint d \tau d a\left\{-\frac{1}{2} E^{\prime \prime}(V)\left(V \frac{\partial \xi}{\partial X}\right)^{2}\right\} \\
& \approx \iint d \tau d a\left\{-\frac{1}{2} E^{\prime \prime}(V)(V A k \sin \theta)^{2}\right\} \\
& \approx \iint d \tau d a\left\{-\frac{1}{4} E^{\prime \prime}(V)(V A k)^{2}\right\}
\end{aligned}
$$

The result is the averaged Lagrangian:

$$
\mathrm{L}_{2}[X(a, \tau), A(X, T), \theta(X, T)]=\iint d \tau d a \frac{1}{4} A^{2}\left\{(\omega-U k)^{2}-c^{2} k^{2}\right\}
$$

where

$$
c^{2} \equiv V^{2} E^{\prime \prime}(V), \quad k \equiv \frac{\partial \theta}{\partial X}, \quad \omega \equiv-\frac{\partial \theta}{\partial T}
$$

The amplitude variation

$$
\delta A: \quad(\omega-U k)^{2}=c^{2} k^{2}
$$

yields the dispersion relation

$$
\omega=U k+c k
$$

$$
\mathrm{L}_{2}[X(a, \tau), A(X, T), \theta(X, T)]=\iint d \tau d a \frac{1}{4} A^{2}\left\{(\omega-U k)^{2}-c^{2} k^{2}\right\}
$$

The phase variation

$$
\delta \mathrm{L}_{2}=\iint d T d X \frac{\partial a}{\partial X}\left\{\frac{1}{2} A^{2}\left[(\omega-U k)\left(-\frac{\partial \delta \theta}{\partial T}-U \frac{\partial \delta \theta}{\partial X}\right)-c^{2} k \frac{\partial \delta \theta}{\partial X}\right]\right\}
$$

yields the equation

$$
\frac{\partial}{\partial T}(W)+\frac{\partial}{\partial X}[(U+c) W]=0
$$

for the conservation of wave action,

$$
W \equiv \frac{E_{r}}{\omega_{r}}
$$

where

$$
E_{r}=\frac{1}{2} \bar{\rho} A^{2} \omega_{r}^{2}
$$

is the wave energy in a reference frame moving with the mean flow, and

$$
\omega_{r}=\omega-U k=c k
$$

is the frequency in that same reference frame.
This is Whitham's averaged Lagrangian approach.

To complete the description of the wave field, we must develop evolution equations for k and ω.

From the definitions

$$
k \equiv \frac{\partial \theta}{\partial X} \quad \text { and } \quad \omega \equiv-\frac{\partial \theta}{\partial T}
$$

we obtain the consistency equation

$$
\frac{\partial k}{\partial T}+\frac{\partial \omega}{\partial X}=0
$$

Substituting from the dispersion relation

$$
\omega=(U+c) k
$$

we obtain the refraction equation

$$
\left[\frac{\partial}{\partial T}+(U+c) \frac{\partial}{\partial X}\right] k=-k \frac{\partial}{\partial X}(U+c)
$$

Similarly

$$
\begin{aligned}
\frac{\partial \omega}{\partial T} & =(U+c) \frac{\partial k}{\partial T}+k \frac{\partial}{\partial T}(U+c) \\
& =-(U+c) \frac{\partial \omega}{\partial X}+k \frac{\partial}{\partial T}(U+c)
\end{aligned}
$$

i.e.

$$
\left[\frac{\partial}{\partial T}+(U+c) \frac{\partial}{\partial X}\right] \omega=+k \frac{\partial}{\partial T}(U+c)
$$

This is standard ray theory.
The description of the wave field is complete.

Equations for the mean flow
We get the mean flow equations by varying $X(a, \tau)$.
We have

$$
\begin{aligned}
& \mathrm{L}=\mathrm{L}_{1}[X(a, \tau)]+\mathrm{L}_{2}[X(a, \tau), A(X, T), \theta(X, T)] \\
& \mathrm{L}_{1}=\iint d \tau d a\left\{\frac{1}{2} U^{2}-E(V)\right\} \\
& \mathrm{L}_{2}=\iint d \tau d a \frac{1}{4} A^{2}\left\{(\omega-U k)^{2}-c^{2} k^{2}\right\}
\end{aligned}
$$

where

$$
U \equiv \frac{\partial X}{\partial \tau}, \quad V \equiv \frac{\partial X}{\partial a}
$$

Although A and θ are not varied, they are affected by the variations in X. For example:

$$
\delta X(a, \tau): \quad \delta A(X, T)=\frac{\partial A}{\partial X} \delta X(a, \tau)
$$

We find

$$
\begin{gathered}
\delta \mathrm{L}_{1}=\iint d \tau d a\left\{-\frac{\partial^{2} X}{\partial \tau^{2}}-V \frac{\partial P}{\partial X}\right\} \delta X(a, \tau) \\
\text { where } \quad P=-E^{\prime}(V)
\end{gathered}
$$

and

$$
\begin{aligned}
\delta \mathrm{L}_{2}= & \iint d \tau d a\left\{\frac{1}{2} A \delta A\left[(\omega-U k)^{2}-c^{2} k^{2}\right]\right. \\
& \left.+\frac{1}{2} A^{2}[(\omega-U k)(\delta \omega-k \delta U-U \delta k)-c k(c \delta k+k \delta c)]\right\}
\end{aligned}
$$

but the coefficient of δA vanishes by the dispersion relation.

Therefore

$$
\begin{aligned}
& \delta \mathrm{L}_{2}=\iint d \tau d a\left\{\frac{1}{2} A^{2} c k\left[\left(\frac{\partial \omega}{\partial X}-(U+c) \frac{\partial k}{\partial X}\right) \delta X-k \frac{\partial \delta X}{\partial \tau}-k c^{\prime} \frac{\partial \delta X}{\partial a}\right]\right\} \\
& =\iint d \tau d a\left\{\frac{1}{2} A^{2} c k\left(\frac{\partial \omega}{\partial X}-(U+c) \frac{\partial k}{\partial X}\right)+\frac{\partial}{\partial \tau}\left(\frac{1}{2} A^{2} c k^{2}\right)+\frac{\partial}{\partial a}\left(\frac{1}{2} A^{2} k^{2} c c^{\prime}\right)\right\} \delta X
\end{aligned}
$$

so the equation for the mean flow is

$$
-\frac{\partial U}{\partial \tau}-V \frac{\partial P}{\partial X}+\frac{1}{2} A^{2} c k\left(\frac{\partial \omega}{\partial X}-(U+c) \frac{\partial k}{\partial X}\right)+\frac{\partial}{\partial \tau}\left(\frac{1}{2} A^{2} c k^{2}\right)+V \frac{\partial}{\partial X}\left(\frac{1}{2} A^{2} k^{2} c c^{\prime}\right)=0
$$

It can also be written

$$
\frac{\partial}{\partial \tau}\left(U-\frac{W k}{\bar{\rho}}\right)=-\frac{1}{\bar{\rho}} \frac{\partial}{\partial X}\left(P-\frac{1}{2} A^{2} k^{2} c c^{\prime}\right)+\frac{W k}{\bar{\rho}} \frac{\partial}{\partial X}(U+c)
$$

This equation is equivalent to

$$
\frac{\partial}{\partial T}(\bar{\rho} U)+\frac{\partial}{\partial X}\left(\bar{\rho} U^{2}\right)+\frac{\partial P}{\partial X}=\frac{\partial R}{\partial X}
$$

where

$$
R=\frac{1}{2} A^{2} k^{2} c c^{\prime}-\frac{1}{2} \bar{\rho} A^{2} k^{2} c^{2}
$$

is the radiation stress.
With the continuity equation for the mean flow

$$
\frac{\partial \bar{\rho}}{\partial \tau}+\bar{\rho} \frac{\partial U}{\partial X}=0
$$

we have a complete description of the mean flow and the wave field.

Generalization to 3 dimensions

The method is the same as in the one-dimensional case, but the final result is more intersting

$$
\begin{gathered}
\mathrm{L}[\mathbf{x}(\mathbf{a}, \tau)]=\int d \tau \iiint d \mathbf{a}\left\{\frac{1}{2} \frac{\partial \mathbf{x}}{\partial \tau} \cdot \frac{\partial \mathbf{x}}{\partial \tau}-E\left(\frac{\partial(\mathbf{x})}{\partial(\mathbf{a})}\right)\right\} \\
\mathbf{x}(\mathbf{a}, \tau)=\mathbf{X}(\mathbf{a}, \tau)+\xi(\mathbf{X}, T), \\
\frac{\partial \mathbf{x}}{\partial \tau}=\frac{\partial \mathbf{X}}{\partial \tau}+\left(\frac{\partial}{\partial T}+\frac{\partial \mathbf{X}}{\partial \tau} \cdot \nabla_{\mathbf{x}}\right) \xi \equiv \mathbf{U}+D \xi, \\
E\left(\frac{\partial(\mathbf{x})}{\partial(\mathbf{a})}\right)=E(V)+V E^{\prime}(V)\left\{\nabla_{\mathbf{x}} \cdot \boldsymbol{\xi}+\frac{\partial(\eta, \zeta)}{\partial(Y, Z)}+\frac{\partial(\xi, \zeta)}{\partial(X, Z)}+\frac{\partial(\xi, \eta)}{\partial(X, Y)^{\prime}}\right\} \\
+\frac{1}{2} c^{2}\left(\nabla_{\mathbf{x}} \cdot \xi\right)^{2}+\mathrm{O}(\xi 3) \\
\xi=R e\left(\mathbf{A} e^{i \theta}\right) \\
\mathrm{L}=\mathrm{L}_{1}[\mathbf{X}(\mathbf{a}, \tau)]+\mathrm{L} 2[\mathbf{X}(\mathbf{a}, \tau), \mathbf{A}(\mathbf{X}, T), \theta(\mathbf{X}, T)], \\
\mathrm{L}_{1}=\int d \tau \iiint d \mathbf{a}\left\{\frac{1}{2} \frac{\partial \mathbf{X}}{\partial \tau} \cdot \frac{\partial \mathbf{X}}{\partial \tau}-E\left(\frac{\partial(\mathbf{X})}{\partial(\mathbf{a})}\right)\right\} \\
\mathrm{L}_{2}=\int d \tau \iiint d \mathbf{a}\left\{\frac{1}{4}(\omega-\mathbf{U} \cdot \mathbf{k})^{2} \mathbf{A} \cdot \mathbf{A}^{*}-\frac{1}{4} c^{2}(\mathbf{k} \cdot \mathbf{A})\left(\mathbf{k} \cdot \mathbf{A}^{*}\right)\right\} \\
\mathbf{k} \equiv \nabla_{\mathbf{x}} \theta \quad \text { and } \quad \omega \equiv-\frac{\partial \theta}{\partial T}
\end{gathered}
$$

Derivation of the wave equations

$$
\mathrm{L}_{2}=\int d \tau \iiint d \mathbf{a}\left\{\frac{1}{4}(\omega-\mathbf{U} \cdot \mathbf{k})^{2} \mathbf{A} \cdot \mathbf{A}^{*}-\frac{1}{4} c^{2}(\mathbf{k} \cdot \mathbf{A})\left(\mathbf{k} \cdot \mathbf{A}^{*}\right)\right\}
$$

Amplitude variation

$$
\delta \mathbf{A}: \quad \mathbf{A}=A \frac{\mathbf{k}}{|\mathbf{k}|} \quad \text { and } \quad \omega_{r} \equiv \omega-\mathbf{U} \cdot \mathbf{k}=c k
$$

which allows us to simplify:

$$
\mathrm{L}_{2}=\int d \tau \iiint d \mathbf{a}\left\{\frac{1}{4}(\omega-\mathbf{U} \cdot \mathbf{k})^{2} A^{2}-\frac{1}{4} c^{2} k^{2} A^{2}\right\}
$$

Phase variation

$$
\delta \theta: \quad \frac{\partial W}{\partial T}+\nabla_{\mathbf{x}} \cdot\left[\left(\mathbf{U}+c \frac{\mathbf{k}}{k}\right) W\right]=0
$$

yields equation for the wave action,

$$
W=\frac{1}{2} \bar{\rho} A^{2} c k=\frac{E_{r}}{\omega_{r}}
$$

The dispersion relation and the refraction equation,

$$
\frac{\partial \mathbf{k}}{\partial T}+\nabla_{\mathbf{X}}(\mathbf{U} \cdot \mathbf{k}+c k)=0
$$

complete the description of the wave field.

Derivation of the equations for the mean flow

$$
\delta \mathrm{L}_{2}=\int d \tau \iiint d \mathbf{a}\left\{\frac{1}{2} A^{2} \omega_{r}\left(\delta \omega-\mathbf{U} \cdot \delta \mathbf{k}-\mathbf{k} \cdot \frac{\partial \delta \mathbf{X}}{\partial \tau}\right)-\frac{1}{2} A^{2} c k\left(c \delta k+k c^{\prime} \delta \frac{\partial(\mathbf{X})}{\partial(\mathbf{a})}\right)\right\}
$$

Integrating by parts, and combining this with the result from varying L1, we obtain

$$
\delta \mathbf{X}: \quad \frac{\partial}{\partial \tau}\left(U_{i}-\frac{W k_{i}}{\bar{\rho}}\right)=-\frac{1}{\bar{\rho}} \frac{\partial}{\partial X_{i}}\left(P-\frac{1}{2} A^{2} k^{2} c c^{\prime}\right)+\frac{W}{\bar{\rho}}\left(k_{j} \frac{\partial U_{j}}{\partial X_{i}}+k \frac{\partial c}{\partial X_{i}}\right)
$$

This can be manipulated to give the complete set of mean flow equations

$$
\begin{gathered}
\frac{\partial}{\partial T}\left(\bar{\rho} U_{i}\right)+\frac{\partial}{\partial X_{i}}\left(\bar{\rho} U_{i} U_{j}\right)+\frac{\partial P}{\partial X_{i}}=\frac{\partial R_{i j}}{\partial X_{j}} \\
R_{i j}=\frac{1}{2} A^{2}\left(c c^{\prime} k^{2} \delta_{i j}-\bar{\rho} c^{2} k_{i} k_{j}\right) \\
\frac{\partial}{\partial T}(\bar{\rho})+\frac{\partial}{\partial X_{i}}\left(\bar{\rho} U_{i}\right)=0
\end{gathered}
$$

and wave equations

$$
\begin{gathered}
\frac{\partial W}{\partial T}+\nabla_{\mathbf{x}} \cdot\left[\left(\mathbf{U}+c \frac{\mathbf{k}}{k}\right) W\right]=0 \quad W \equiv \frac{1}{2} \bar{\rho} A^{2} c k=\frac{E_{r}}{\omega_{r}} \\
\omega_{r} \equiv \omega-\mathbf{U} \cdot \mathbf{k}=c k \\
\frac{\partial \mathbf{k}}{\partial T}+\nabla_{\mathbf{x}}(\mathbf{U} \cdot \mathbf{k}+c k)=0
\end{gathered}
$$

However, the "raw equation"
$\delta \mathbf{X}: \quad \frac{\partial}{\partial \tau}\left(U_{i}-\frac{W k_{i}}{\bar{\rho}}\right)=-\frac{1}{\bar{\rho}} \frac{\partial}{\partial X_{i}}\left(P-\frac{1}{2} A^{2} k^{2} c c^{\prime}\right)+\frac{W}{\bar{\rho}}\left(k_{j} \frac{\partial U_{j}}{\partial X_{i}}+k \frac{\partial c}{\partial X_{i}}\right)$
leads more directly to the interesting result:

$$
\frac{\partial}{\partial \tau} \oint\left(\mathbf{U}-\frac{W \mathbf{k}}{\bar{\rho}}\right) \cdot d \mathbf{X}=0
$$

This reminds us of the (homentropic) vorticity theorem

$$
\frac{\partial}{\partial \tau} \oint \mathbf{u} \cdot d \mathbf{x}=0
$$

The latter was associated with the particle-relabeling symmetry. Can we derive the former from this same symmetry?

Particle-relabeling symmetry for the mean flow

The complete Lagrangian is:

$$
\begin{aligned}
\mathrm{L}= & \int d \tau \iiint d \mathbf{a}\left\{\frac{1}{2} \frac{\partial \mathbf{X}}{\partial \tau} \cdot \frac{\partial \mathbf{X}}{\partial \tau}-E\left(\frac{\partial(\mathbf{X})}{\partial(\mathbf{a})}\right)\right\} \\
& +\int d \tau \iiint d \mathbf{a}\left\{\frac{1}{4}\left(\omega-\frac{\partial \mathbf{X}}{\partial \tau} \cdot \mathbf{k}\right)^{2} A^{2}-\frac{1}{4} c^{2} k^{2} A^{2}\right\}
\end{aligned}
$$

Consider particle-label variations that leave $\partial(\mathbf{X}) / \partial(\mathbf{a})$ unchanged. These only affect

$$
\delta \frac{\partial \mathbf{X}}{\partial \tau}
$$

Therefore

$$
\begin{aligned}
\delta \mathrm{L} & =\int d \tau \iiint d \mathbf{a}\left\{\frac{\partial \mathbf{X}}{\partial \tau} \cdot \delta \frac{\partial \mathbf{X}}{\partial \tau}-\frac{1}{2} A^{2} \omega_{r} \mathbf{k} \cdot \delta \frac{\partial \mathbf{X}}{\partial \tau}\right\} \\
& =\int d \tau \iiint d \mathbf{a}\left\{\frac{\partial \mathbf{X}}{\partial \tau}-\frac{W \mathbf{k}}{\bar{\rho}}\right\} \cdot \delta \frac{\partial \mathbf{X}}{\partial \tau}
\end{aligned}
$$

Proceeding just as before we obtain

$$
\frac{\partial}{\partial \tau}\left(\nabla_{\mathbf{a}} \times \mathbf{A}\right)=0
$$

where now

$$
A_{j} \equiv\left(\frac{\partial X_{i}}{\partial \tau}-\frac{W k_{i}}{\bar{\rho}}\right) \frac{\partial X_{i}}{\partial a_{j}}
$$

That is

$$
\mathbf{A} \cdot d \mathbf{a}=\left\{\frac{\partial \mathbf{X}}{\partial \tau}-\frac{W \mathbf{k}}{\bar{\rho}}\right\} \cdot d \mathbf{X}
$$

Converting

$$
\frac{\partial}{\partial \tau}\left(\nabla_{\mathbf{a}} \times \mathbf{A}\right)=0
$$

into conventional notation, we have

$$
\frac{\partial}{\partial \tau}\left[\frac{\nabla_{\mathbf{x}} \times(\mathbf{U}-W \mathbf{k} / \bar{\rho}) \cdot \nabla_{\mathbf{x}} \Theta}{\bar{\rho}}\right]=0
$$

This seems to hold for every type of wave, and it seems to be the most general type of conservation law for mean flows in the presence of waves.

Generalizations:

Waves of finite-amplitude
Disturbances of any form. Introduce the ensemble parameter μ

$$
\xi=\xi(\mathbf{X}, T, \mu)
$$

and average over μ to obtain the "averaged Lagrangian". This leads to the generalized Lagrangian mean formalism of Andrews \& McIntyre.

