Mean flows and disturbances

Lagrangian for a one-dimensional fluid:

2
ox 0x
L , = drdali| = | -E[=
Ham)]=Jf ar a{z(%) (&a)}
Hamilton’s principle:
f dt L[x(a,r)]=0 for arbitrary 6x(a,1:)

Regard x(a,7) as a time-dependent mapping:

Now define the composite mapping
x(a,r) = X(a,r) + E(X,T)
X(a,T) 1s the mean flow.

&E(X,T) is the displacement of the fluid particle labeled by a from
the location it would have if it had moved with the mean flow.

T.ectuire 3. nacse 1 of 14



Rewrite the Lagrangian in terms of X(a,7) and &X,T).

L[x(a.7)]= [f dv d“{%(%)z ) E(j_z)}

x(a,r) = X(a,r) + E(X,T)

Rewrite the time derivative as

x _ aX+( J +0"'X J )g(X,T)
or Jdtr \JdT Jdtr dX
that is
u=U+DE
where
oX J J
U=" D=—+U—
o 2nd ar oX
Rewrite the Jacobian as
o _ i(X(a,‘lr)+§(X,T)) 2 95 X _ V+V§
da da da 0X da 0X
where
_9X
da

The Lagrangian becomes

Lx(a) &)= [ drdepy 0«0 -£{v+v 50
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_ 1 2 _ 143
L[X(a7), §(X.T)]= [[ dr da{z (U + D) E(V+ v ax)}
Hamilton’s principle:
f dt L X T)] 0 for arbitrary 06X (a,t), 6§(X,T )

Yields two dynamical equations, reflecting the many possible ways
of dividing a single flow into a mean flow and a disturbance.

Suppose the disturbance takes the form of a slowly-varying wave:
E(X,T)=A(X.,T) cos 6(X.T)

_99
X

L

I

Assume also that A 1s small. Then

9 N IEN | (e
E(V+V07—§)=E(V)+E (V)Va—§+5E (V)(Va—i) +0(8’)

L=L,[X(a7)]+L,[X(a,7), A(X,T), 6(X.,T)]

L, =ffdtda {%Uz—E(V)}
L, = [[ drda {UD§+%(D§)2‘E'(V)Vg_%E”(V)(Vg)Z}

oX oX
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Use the slowly varying approximation to simplify

L, = ([ drda {UD&%(D%)Z BV i ”(V)(Vg)z}

oX oX
e.g.

L, ffdtda{ )(Vji) }
~ [J dvda {~4E"(v)(V Aksin6)’}
~ [J dvda {~E"(V)(VAK)'|

l\.)|

The result is the averaged Lagrangian:
Ly[X(a7), A(X.T), 0(X.T)]= [[ drda $ A*{(w-Uk) -’

where

> =V?E"(V), k=29 -

X’ ar

The amplitude variation

OA : (a)—Uk)2 = c’k?

yields the dispersion relation

w =Uk +ck
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Ly[X(a7), A(X.T), 0(X.T)]= [[ drda  A*{(w-Uk) -’

The phase variation

of (900 380\ 5, 350
5L, fdedX {Al( Uk)( po UaX) ckax}}

yields the equation

(;LT(W)+&iX[(U+c)W]=O

for the conservation of wave action,

74

E,
(00

where

1_
r Ep

1s the wave energy in a reference frame moving with the mean

flow, and
w, =w-Uk =ck

is the frequency in that same reference frame.

This is Whitham’s averaged Lagrangian approach.
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To complete the description of the wave field, we must develop
evolution equations for k£ and w.

From the definitions

d0 d0
k=— and ®=-—

0X ar

we obtain the consistency equation

ok do _
oT "~ X

Substituting from the dispersion relation
w=(U+ck

we obtain the refraction equation

[i+(U+c)i]k=_ki(U+c)

JT oX oX
Similarly
9 _w+e)® sk L (o)
JA Jor JT
Jw 7
- (U+) 224k (U
| ( +C>&X+ &T( +c)
ie.

This is standard ray theory.
The description of the wave field is complete.
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Equations for the mean flow

We get the mean flow equations by varying X(a, ).

We have
[ ]+ 2[X ), A(X.T), O(X,T)]
L, ffdtda {fU*-E(V }
L, = [[ dvda }A*{(0-UK) -k}
where
_9X _9X
o’  da

Although A and 6 are not varied, they are affected by the variations
in X. For example:

SX(a7):  SA(X.T)= %ax(a,r)
We find
°X ,IP
oL, =ffdrda {— P —V(?X}éX(a,r)
where p =—E'(V)
and

SL, = [[ drda {3 Ad4|(w-Uk) -]
+1 A?|(w - Uk)(6w -k U -U 6k ) - ck(c 5k +k 6c)| }

but the coefficient of A vanishes by the dispersion relation.
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Therefore

ot da

k
oL, =ffd1:da { %Azck[(g—;—(U+c)&_

X
= [[ dvda { 1 A%ck (Z;) (U+c)j—)k()+%(lA2ck) ja(uﬁk cc') yoX

)5){ K9 ke '%X}}

\S]

so the equation for the mean flow is

_U _y P k(ﬁw (U+ )ak)+i(%Azck2)+vi(%A2kzcc')=O
X Ix x) ot Ix

It can also be written

J (U—Kk) —li(P—%Azkzcc')+Kki(U+c)
ot P p X oX

This equation is equivalent to

J ,_ d (_,.2y 0P OR
2 (oU\+-Z(pU o

(p )+(9X (p ) oX o0X
where

R=1A%%*cc ——pAzk

1
2

1s the radiation stress.
With the continuity equation for the mean flow

we have a complete description of the mean flow and the wave
field.
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Generalization to 3 dimensions

The method 1s the same as in the one-dimensional case, but the
final result is more intersting

fdtfffda{lg-E—E

x(a,7) = X(a,7) + §(X,T),

ax _dX (a+ax.v)
ot ot \or ar  X)5=U+DS,

W) VE (V) g e 1 T

+ 5 (Vx B2 + 0(ED)

i(a)

E=Re (A eib)
L =L1[X(a,7)] + L2[X(a,7), AX,T), OX,1)],
dX X
RN I ]|
L, =defffda{i(a)—U-k)2A-A* —%cz(k-A)(k-A*)}

£ 7X)
“ofa)

k=V0 and w=-—
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Derivation of the wave equations

L2=defffda{i(a)—U-k)2A-A*_%Cz(k.A)(k.A*)}

Amplitude variation

OA : A=A% and w,=w-U-k=ck

which allows us to simplify:

L, = [dr[ff daf}(w-U k) A’ Lch7A%)

Phase variation

oW
—+
JoT

00 : V-

(U +cC E) W] =0
k
yields equation for the wave action,

W=

0=

pA*ck = £
wr

The dispersion relation and the refraction equation,

ok
(?—T+VX(U-k+ck) 0

9

complete the description of the wave field.
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Derivation of the equations for the mean flow

d0X

oL, =fdrfffda{éAzwr(éw-U-5k-k-¥)-%A2ck cskric's ")

i(a)

|

Integrating by parts, and combining this with the result from
varying L1, we obtain

ox: Lo M)l (poyaiiee) Kk Srar X
7\ "o ) pax, o\ ax, T X,

This can be manipulated to give the complete set of mean flow
equations

J oP OR;
—(pU,)+—(pUU )+ —=—"
aT(p ’)+&Xl. (PU, ’)+axl. oX

J

2 17,2 2
R;=3A (cc k=0, - pc kikj)

J J

—(p)+—(pU,)=0

aT(p) 0X, (pU})

and wave equations

ﬂ+VX- (U+CE)W =0 WE%ﬁA20k=£
ar k w,

w,=w-U-k=ck

&+VX(U-k+ck)=0

JdT
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However, the “raw equation”

. oU .
5X : 9y, Wk =-1&(P-;A2k2cc')+w kjf+k‘9c
It o p X, p\ 7 ax, ax,

leads more directly to the interesting result:

9 (U_%).dx=o
ot o

This reminds us of the (homentropic) vorticity theorem

i u-dx=0
ot

The latter was associated with the particle-relabeling symmetry.
Can we derive the former from this same symmetry?
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Particle-relabeling symmetry for the mean flow
The complete Lagrangian is:
£ 9X)

L= far s 2% 20|
[ar fffda{ - Az_iczmz}

Consider particle-label variations that leave o”(X)/ &(a) unchanged.

These only affect

55X
ot

Therefore

o= [ ar [[f dal 0T a0 k-0 X
I

Proceeding just as before we obtain

5
vV, xA)=0
- (Vaxa)

(ax,. Wk, ) X,
ot p )da;

where now
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That 1s

A-da={§—%}-dx
T p

Converting

5
7 (V,xA)=0
—(VaxA)

into conventional notation, we have

9 [Vxx(U-WK/p)- V40

— =0
ot o

This seems to hold for every type of wave, and it seems to be the

most general type of conservation law for mean flows in the

presence of waves.

Generalizations:

Waves of finite-amplitude

Disturbances of any form. Introduce the ensemble parameter u
E=8X.T.w

and average over u to obtain the “averaged Lagrangian”. This

leads to the generalized Lagrangian mean formalism of Andrews
& Mclntyre.
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