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Mean flows and disturbances

Lagrangian for a one-dimensional fluid:

L x a,τ( )[ ] ≡ dτ∫∫ da 1
2

∂x

∂τ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

− E
∂x

∂a

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Hamilton’s principle:

dτ   ∫ L x a,τ( )[ ] = 0        for arbitrary     δx a,τ( )

Regard x(a,τ) as a time-dependent mapping:

Now define the composite mapping

x a,τ( ) = X a,τ( )+ξ X,T( )

X(a,τ) is the mean flow.

ξ(X,T) is the displacement of the fluid particle labeled by a from
the location it would have if it had moved with the mean flow.
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Rewrite the Lagrangian in terms of X(a,τ) and ξ(X,T).

L x a,τ( )[ ] ≡ dτ∫∫ da 1
2

∂x

∂τ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

− E
∂x

∂a

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

x a,τ( ) = X a,τ( )+ξ X,T( )

Rewrite the time derivative as

∂x

∂τ
=

∂X

∂τ
+

∂
∂T

+
∂X

∂τ
∂

∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ξ X,T( )

that is
u = U + Dξ

where

U ≡
∂X

∂τ
    and     D ≡

∂
∂T

+U
∂

∂X

Rewrite the Jacobian as

∂x

∂a
=

∂
∂a

X a,τ( )+ξ X,T( )( ) =
∂X

∂a
+

∂ξ
∂X

∂X

∂a
= V +V

∂ξ
∂X

where

V ≡
∂X

∂a

The Lagrangian becomes

L X a,τ( ), ξ X,T( )[ ] = dτ∫∫ da 1
2 U + Dξ( )2

− E V +V
∂ξ
∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
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L X a,τ( ), ξ X,T( )[ ] = dτ∫∫ da 1
2 U + Dξ( )2

− E V +V
∂ξ
∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Hamilton’s principle:

dτ   ∫ L X a,τ( ),ξ X,T( )[ ] = 0        for arbitrary     δX a,τ( ),  δξ X,T( )

Yields two dynamical equations, reflecting the many possible ways
of dividing a single flow into a mean flow and a disturbance.

Suppose the disturbance takes the form of a slowly-varying wave:

ξ X,T( ) = A X,T( ) cos θ X,T( )

k ≡
∂θ
∂X

ω ≡ −
∂θ
∂T

Assume also that A is small.  Then

E V +V
∂ξ
∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = E V( )+ E ' V( )V ∂ξ

∂X
+ 1

2 E ' ' V( ) V
∂ξ
∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+O ξ 3( )

L = L1 X a,τ( )[ ]+ L 2 X a,τ( ), A X,T( ), θ X,T( )[ ]

L1 = dτ∫∫ da 1
2 U 2 − E V( ){ }

L 2 = dτ∫∫ da U Dξ + 1
2 Dξ( )2

− E ' V( )V ∂ξ
∂X

− 1
2 E ' ' V( ) V

∂ξ
∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
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Use the slowly varying approximation to simplify

L 2 = dτ∫∫ da U Dξ + 1
2 Dξ( )2

− E ' V( )V ∂ξ
∂X

− 1
2 E ' ' V( ) V

∂ξ
∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

e.g.

L 2 = dτ∫∫ da − 1
2 E ' ' V( ) V

∂ξ
∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

     ≈ dτ∫∫ da − 1
2 E ' ' V( ) V A k sinθ( )2{ }

     ≈ dτ∫∫ da − 1
4 E ' ' V( ) V A k( )2{ }

The result is the averaged Lagrangian:

L 2 X a,τ( ), A X,T( ), θ X,T( )[ ] = dτ∫∫ da 1
4 A2 ω −Uk( )2

− c2k 2{ }

where

c2 ≡ V 2E ' ' V( ),     k ≡
∂θ
∂X

,     ω ≡ −
∂θ
∂T

The amplitude variation

δA : ω −Uk( )2
= c2k 2

yields the dispersion relation

ω = Uk + ck
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L 2 X a,τ( ), A X,T( ), θ X,T( )[ ] = dτ∫∫ da 1
4 A2 ω −Uk( )2

− c2k 2{ }

The phase variation

δ L 2 = dT∫∫ dX
∂a

∂X
{ 1

2 A2 ω −Uk( ) −
∂δθ
∂T

−U
∂δθ
∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ − c2k

∂δθ
∂X

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ }

yields the equation

∂
∂T

W( )+
∂

∂X
U + c( )W[ ] = 0

for the conservation of wave action,

W ≡
Er

ω r

where
Er = 1

2 ρ A2ω r
2

is the wave energy in a reference frame moving with the mean
flow, and

ω r = ω −Uk = ck

is the frequency in that same reference frame.

This is Whitham’s averaged Lagrangian approach.
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To complete the description of the wave field, we must develop
evolution equations for k and ω.

From the definitions

k ≡
∂θ
∂X

     and     ω ≡ −
∂θ
∂T

we obtain the consistency equation

∂k

∂T
+

∂ω
∂X

= 0

Substituting from the dispersion relation

ω = U + c( )k

we obtain the refraction equation

∂
∂T

+ U + c( ) ∂
∂X

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ k = −k

∂
∂X

U + c( )

Similarly
∂ω
∂T

= U + c( ) ∂k

∂T
+ k

∂
∂T

U + c( )

= − U + c( )∂ω
∂X

+ k
∂

∂T
U + c( )

i.e.

∂
∂T

+ U + c( ) ∂
∂X

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ω = +k

∂
∂T

U + c( )

This is standard ray theory.
The description of the wave field is complete.
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Equations for the mean flow

We get the mean flow equations by varying X(a,τ).

We have

L = L1 X a,τ( )[ ]+ L 2 X a,τ( ), A X,T( ), θ X,T( )[ ]
L1 = dτ∫∫ da 1

2 U 2 − E V( ){ }
L 2 = dτ∫∫ da 1

4 A2 ω −Uk( )2
− c2k 2{ }

where

U ≡
∂X

∂τ
,       V ≡

∂X

∂a

Although A and θ are not varied, they are affected by the variations
in X.  For example:

δX a,τ( ) : δ A X,T( ) =
∂A

∂X
δX a,τ( )

We find

δ L1 = dτ∫∫ da −
∂ 2X

∂τ 2
−V

∂P

∂X

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

δX a,τ( )

where          P = −E ' V( )
and

δ L 2 = dτ∫∫ da { 1
2 AδA ω −Uk( )2

− c2k 2[ ]
+ 1

2 A2 ω −Uk( ) δω − k δU −U δk( ) − ck cδk + k δc( )[ ] }

but the coefficient of δA vanishes by the dispersion relation.
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Therefore

δ L 2 = dτ∫∫ da { 1
2 A2ck

∂ω
∂X

− U + c( ) ∂k

∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ δX − k

∂δX

∂τ
− kc'

∂δX

∂a

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ }

= dτ∫∫ da { 1
2 A2ck

∂ω
∂X

− U + c( ) ∂k
∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

∂
∂τ

1
2 A2ck 2( )+

∂
∂a

1
2 A2k 2cc '( ) }δX

so the equation for the mean flow is

−
∂U

∂τ
−V

∂P

∂X
+ 1

2 A2ck
∂ω
∂X

− U + c( ) ∂k

∂X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ +

∂
∂τ

1
2 A2ck 2( )+V

∂
∂X

1
2 A2k 2cc '( ) = 0

It can also be written

∂
∂τ

U −
Wk

ρ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

1
ρ 

∂
∂X

P − 1
2 A2k 2cc'( )+

Wk

ρ 
∂

∂X
U + c( )

This equation is equivalent to

∂
∂T

ρ U( )+
∂

∂X
ρ U 2( )+

∂P

∂X
=

∂R

∂X

where
R = 1

2 A2k 2cc' − 1
2 ρ A2k 2c2

is the radiation stress.
With the continuity equation for the mean flow

∂ρ 
∂τ

+ ρ 
∂U

∂X
= 0

we have a complete description of the mean flow and the wave
field.
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Generalization to 3 dimensions

The method is the same as in the one-dimensional case, but the
final result is more intersting

L x a,τ( )[ ] = dτ∫ da 1
2

∂x
∂τ

⋅
∂x
∂τ

− E
∂ x( )
∂ a( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ ∫∫∫

x(a,τ) = X(a,τ) + ξ(X,T),

∂x
∂τ

=
∂X
∂τ

+
∂

∂T
+

∂X
∂τ

⋅∇X

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ξ ≡ U + Dξ ,

E
∂ x( )
∂ a( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = E V( )+VE ' V( ) {∇X ⋅ξ + 

∂ η,ζ( )
∂ Y ,Z( )

+
∂ ξ,ζ( )
∂ X,Z( )

+
∂ ξ,η( )
∂ X,Y( )}

+ 1
2 c2 (∇X ⋅ξ )2 + O(ξ3)

ξ = Re (A eiθ)

L = L1[X(a,τ)] + L2[X(a,τ), A(X,T), θ(X,T)],

L1 = dτ∫ da 1
2

∂X
∂τ

⋅
∂X
∂τ

− E
∂ X( )
∂ a( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ ∫∫∫

L 2 = dτ∫ da 1
4 ω − U ⋅ k( )2

A ⋅A* − 1
4 c2 k ⋅A( ) k ⋅A*( ){ }∫∫∫

k ≡ ∇Xθ and ω ≡ −
∂θ
∂T
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Derivation of the wave equations

L 2 = dτ∫ da 1
4 ω − U ⋅ k( )2

A ⋅A* − 1
4 c2 k ⋅A( ) k ⋅A*( ){ }∫∫∫

Amplitude variation

δA : A = A
k
k

and ω r ≡ ω − U ⋅ k = ck

which allows us to simplify:

L 2 = dτ∫ da 1
4 ω − U ⋅ k( )2

A2 − 1
4 c2k 2A2{ }∫∫∫

Phase variation

δθ :
∂W

∂T
+ ∇X ⋅ U + c

k
k

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ W

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ = 0

yields equation for the wave action,

W = 1
2 ρ A2ck =

Er

ω r

The dispersion relation and the refraction equation,

∂k
∂T

+ ∇X U ⋅ k + ck( ) = 0,

complete the description of the wave field.



Lecture 3, page 11 of 14

Derivation of the equations for the mean flow

δL 2 = dτ∫ da 1
2 A2ω r δω − U ⋅δk − k ⋅

∂δX
∂τ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ − 1

2 A2ck cδk + kc 'δ
∂ X( )
∂ a( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ ∫∫∫

Integrating by parts, and combining this with the result from
varying L1, we obtain

δX :
∂
∂τ

Ui −
Wki

ρ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

1
ρ 

∂
∂Xi

P − 1
2 A2k 2cc '( )+

W

ρ 
k j

∂U j

∂Xi

+ k
∂c

∂Xi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

This can be manipulated to give the complete set of  mean flow
equations

∂
∂T

ρ Ui( )+
∂

∂Xi

ρ UiU j( )+
∂P

∂Xi

=
∂Rij

∂X j

Rij = 1
2 A2 cc ' k 2δij − ρ c2kik j( )

∂
∂T

ρ ( )+
∂

∂Xi

ρ Ui( ) = 0

and wave equations

∂W

∂T
+ ∇X ⋅ U + c

k
k

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ W

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ = 0       W ≡ 1
2 ρ A2ck =

Er

ω r

ω r ≡ ω − U ⋅ k = ck

∂k
∂T

+ ∇X U ⋅ k + ck( ) = 0
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However, the “raw equation”

δX :
∂
∂τ

Ui −
Wki

ρ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

1
ρ 

∂
∂Xi

P − 1
2 A2k 2cc '( )+

W

ρ 
k j

∂U j

∂Xi

+ k
∂c

∂Xi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

leads more directly to the interesting result:

∂
∂τ

U −
Wk
ρ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ dX = 0∫

This reminds us of the (homentropic) vorticity theorem

∂
∂τ

u ⋅ dx = 0∫

The latter was associated with the particle-relabeling symmetry.
Can we derive the former from this same symmetry?
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Particle-relabeling symmetry for the mean flow

The complete Lagrangian is:

L = dτ∫ da 1
2

∂X
∂τ

⋅
∂X
∂τ

− E
∂ X( )
∂ a( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ ∫∫∫

      + dτ∫ da 1
4 ω −

∂X
∂τ

⋅ k
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

A2 − 1
4 c2k 2A2

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

∫∫∫

Consider particle-label variations that leave ∂ X( ) /∂ a( ) unchanged.
These only affect

δ
∂X
∂τ

Therefore

δ L = dτ∫ da∫∫∫ ∂X
∂τ

⋅δ
∂X
∂τ

− 1
2 A2ω rk ⋅δ

∂X
∂τ

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= dτ∫ da∫∫∫ ∂X
∂τ

−
Wk
ρ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⋅δ
∂X
∂τ

Proceeding just as before we obtain

∂
∂τ

∇a × A( ) = 0

where now

Aj ≡
∂Xi

∂τ
−

Wki

ρ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
∂Xi

∂aj
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That is

A ⋅ da =
∂X
∂τ

−
Wk
ρ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⋅ dX

Converting

∂
∂τ

∇a × A( ) = 0

into conventional notation, we have

∂
∂τ

∇X × U −Wk /ρ ( ) ⋅∇XΘ

ρ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0

This seems to hold for every type of wave, and it seems to be the
most general type of conservation law for mean flows in the
presence of waves.

Generalizations:

Waves of finite-amplitude

Disturbances of any form.  Introduce the ensemble parameter µ

ξ = ξ(X,T,µ)

and average over µ to obtain the “averaged Lagrangian”.  This
leads to the generalized Lagrangian mean formalism of Andrews
& McIntyre.


