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Hamiltonian Fluid Mechanics

(Classical Mechanics applied to Fluids)

Important caveat:
Hamiltonian methods add nothing to the actual physics.

So why do it?

It is beautiful—simple, geometric.
It makes things easier to do and easier to understand.

Examples of things that are easier to do:

1.  Find conservation laws.
2.  Construct approximations that preserve conservation laws.
3.  Choose variables for which the physics takes the simplest
mathematical form.

Examples of things that are easier to understand:

1.  Why potential vorticity is peculiar to fluids.
2.  Why wave action is conserved.
3.  How potential energy is related to available potential
energy.

Important theme:    Conservation Laws ⇔ Symmetry Properties

This will be an elementary introduction following my book:

Lectures on Geophysical Fluid Dynamics, Oxford, 1998
Chapter 1 (pp 1-12), Chapter 4 (pp 197-206), Chapter 7
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Quick review of basic classical mechanics

Point masses moving in three-dimensional space:

vi =
d

dt
x i t( )

Kinetic energy         T = 1
2

i

∑ mi 
dx i

dt
⋅

dx i

dt

Potential energy    V = V (x1,x2,K,xN )

Lagrangian L = T −V

Action
 

A x1 t( ),x2 t( ),K,xN t( )[ ] = L  dt
t1

t2

∫
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Hamilton’s principle:

δ L  dt
t1

t2

∫ = 0  for arbitrary δx i t( )  with  δx i t1( ) = δx i t2( ) = 0

For our example:

        L = 1
2

i

∑ mi 
dx i

dt
⋅

dx i

dt
−V x1,x2,K,xN( )

  

δ ∫ L dt = dt∫
i

∑ 1
2 mi 

d x i + δx i( )
dt

⋅
d x i + δx i( )

dt
−V x1 + δx1,x2 + δx2,K,xN + δxN( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

                      − 1
2

i

∑ mi 
dx i

dt
⋅

dx i

dt
−V x1,x2,K,xN( )

= dt∫
i

∑ mi 
dx i

dt
⋅

dδx i

dt
−

∂V

∂x i

⋅ δx i

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

+ O δx2( )

= dt∫
i

∑ − mi 
d2x i

dt 2 −
∂V

∂x i

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⋅ δx i

⇒ mi 
d2x i

dt 2 = −
∂V

∂x i
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A fluid is a continuous distribution of particles.

x i t( ) ⇒ x a,b,c,τ( )

where

a,b,c( ) = a

are particle labels assigned such that

da = d mass( )

and

t = τ        so that      
∂F

∂τ
≡

DF

Dt

Note:       
∂a
∂τ

= 0    (particle labels are conserved).

For any  F = F x, y,z,t( ) = F a,b,c,τ( )  the chain rule implies:

∂F

∂τ
=

∂F

∂x

∂x

∂τ
+

∂F

∂y

∂y

∂τ
+

∂F

∂z

∂z

∂τ
+

∂F

∂t

∂t

∂τ

⇔
DF

Dt
= u

∂F

∂x
+ v

∂F

∂y
+ w

∂F

∂z
+

∂F

∂t
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Continuity Equation

Because  da = d mass( ) , the mass density

ρ =
d mass( )

d volume( )
=

∂ a,b,c( )
∂ x,y,z( )

and specific volume

α =
1

ρ
=

∂ x, y,z( )
∂ a,b,c( )

This implies

∂α
∂τ

=
∂ u,y,z( )
∂ a,b ,c( )

+
∂ x,v,z( )
∂ a ,b,c( )

+
∂ x,y,w( )
∂ a,b ,c( )

    =
∂ x,y,z( )
∂ a,b ,c( )

∂ u,y,z( )
∂ x,y,z( )

+
∂ x,v,z( )
∂ x,y,z( )

+
∂ x,y,w( )
∂ x,y,z( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

    = α
∂u

∂x
+

∂v

∂y
+

∂w

∂z

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

which is equivalent to

∂ρ
∂τ

= −ρ
∂u

∂x
+

∂v

∂y
+

∂w

∂z

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

The continuity equation is a built-in feature of the Lagrangian
description.
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Hamilton’s principle for the fluid

Using the analogy with particle mechanics:

1
2

i

∑ mi 
dx i

dt
⋅

dx i

dt
→ 1

2 da∫∫∫ ∂x
∂τ

⋅
∂x
∂τ

V (x1,x2,K,xN ) → da E α,S( ) + Φ x( ){ }∫∫∫

E α,S( )= internal energy per unit mass

α =
∂ x, y,z( )
∂ a,b,c( ) = volume per unit mass

S a,b,c( )= entropy per unit mass.   (∂S ∂τ = 0)

L x a,τ( )[ ] = da∫∫∫ 1
2

∂x
∂τ

⋅
∂x
∂τ

− E
∂(x)

∂(a)
,S a( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − Φ x( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

E α,S( )  is a prescribed function of its 2 arguments.
This is called the fundamental relation of thermodynamics (Gibbs,
Tisza, Callendar).  The fundamental relation determines all other
thermodynamic variables.
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Hamilton’s principle states:

δ dτ∫ da∫∫∫ 1
2

∂x
∂τ

⋅
∂x
∂τ

− E
∂(x)

∂(a)
,S a( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − Φ x( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 0

for arbitrary   δx a,τ( )

The essence of a fluid is that the a-derivatives of x enter L only
through the Jacobian

∂ x, y,z( )
∂ a,b,c( )

This fact is responsible for all the distinctive properties of fluid
mechanics:

1.  The existence of an Eulerian description

2.  The importance of vorticity

3.  The conservation of potential vorticity



Lecture 1, page 8 of 18

Working out Hamilton’s principle:

δ dτ∫ da∫∫∫ 1
2

∂x
∂τ

⋅
∂x
∂τ

− E
∂(x)

∂(a)
,S a( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − Φ x( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

   = dτ∫ da∫∫∫ −
∂ 2x
∂τ 2 ⋅ δx −

∂E α,S( )
∂α

δ
∂(x)

∂(a)
−

∂Φ
∂x

⋅ δx
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

With the help of a useful identity:

da∫∫∫   F  δ
∂ x,y,z( )
∂ a,b,c( )

= da∫∫∫   F  
∂ δx,y,z( )
∂ a,b,c( )

+
∂ x,δy,z( )
∂ a,b,c( )

+
∂ x, y,δz( )
∂ a,b,c( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= da∫∫∫   F  
∂ x,y,z( )
∂ a,b,c( )

∂ δx,y,z( )
∂ x, y,z( )

+
∂ x,δy,z( )
∂ x,y,z( )

+
∂ x, y,δz( )
∂ x,y,z( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= dx  F∫∫∫  ∇ ⋅δx{ }

= − dx  ∇F∫∫∫ ⋅ δx +  F  δx ⋅ n∫∫

Gives

dτ∫ dx  ρ  ∫∫∫ −
∂ 2x
∂τ 2 −

1

ρ
∂p

∂x
−

∂Φ
∂x

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

⋅ δx + dσ∫∫  p  δx ⋅ n

where        p ≡ −
∂E α,S( )

∂α

The surface integral vanishes if the surface is rigid (δx ⋅ n) or
free (p=0)
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Thus Hamilton’s principle says that

∂ 2x
∂τ 2 +

1

ρ
∂p

∂x
+

∂Φ
∂x

= 0 ⇒
Dv
Dt

+
1

ρ
∇p + ∇Φ = 0

To this we may add:

ρ ≡
∂ a,b,c( )
∂ x, y,z( ) ⇒

Dρ
Dt

+ ρ∇ ⋅ v = 0

∂
∂τ

S a,b,c( ) = 0 ⇒
DS

Dt
= 0

p ≡ −
∂E α,S( )

∂α
⇒ p = p ρ,S( )

These are the general equations of a perfect fluid.



Lecture 1, page 10 of 18

Once again, the essence of a fluid is that the derivatives

∂xi

∂a j

enter the Lagrangian only through the Jacobian

∂ x, y,z( )
∂ a,b,c( )

[Note:  (x1,x2,x3) ≡ (x,y,z)  and   (a1,a2,a3) ≡ (a,b,c). ]

This leads to a symmetry property that corresponds to the
relabeling of fluid particles in such a way that the Jacobian is not
affected.

First suppose S=uniform, and consider a particle relabeling

a '= a + δa a,b,c,τ( )
b '= b + δb a,b,c,τ( )
c '= c + δc a,b,c,τ( )

for which

∂ a ' ,b' ,c'( )
∂ x,y,z( )

=
∂ a,b,c( )
∂ x, y,z( )

This implies

∂ δa

∂a
+

∂ δb

∂b
+

∂ δc

∂c
= 0

i.e.

δa = ∇a × δT a,τ( )
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Since

Action = dτ∫ da∫∫∫ 1
2

∂x
∂τ

⋅
∂x
∂τ

− E
∂(x)

∂(a)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − Φ x( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

such a variation implies

δ Action( ) = dτ∫ da∫∫∫ ∂x
∂τ

⋅δ
∂x
∂τ

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Here

δ
∂x
∂τ

=
∂x
∂τ a'

−
∂x
∂τ a

is the change in the time derivative caused by holding fixed a
different set of labels.

We compute:

∂x
∂τ a'

=
∂x
∂τ a

+
∂x
∂a

∂a

∂τ a'

+
∂x
∂b

∂b

∂τ a '

+
∂x
∂c

∂c

∂τ a '

=
∂x
∂τ a

−
∂x
∂a

∂δa

∂τ a '

−
∂x
∂b

∂δb

∂τ a'

−
∂x
∂c

∂δc

∂τ a '

Thus

δ
∂x
∂τ

= −
∂x
∂a

∂δa

∂τ a

−
∂x
∂b

∂δb

∂τ a

−
∂x
∂c

∂δc

∂τ a

+ O δa2( )

and hence

δ Action( ) = − dτ∫ da∫∫∫ ∂xi

∂τ
∂xi

∂a j

∂
∂τ

δa j =L
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δ Action( ) = dτ∫ da∫∫∫ ∂
∂τ

∂xi

∂τ
∂xi

∂a j

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  δa j

Define    Aj ≡
∂xi

∂τ
∂xi

∂aj
    and use    δa = ∇a × δT a,τ( )

Then

δA = dτ∫ da∫∫∫ ∂
∂τ

∇a × A( ) ⋅ δT = 0

In summary:  For the homentropic case, the particle-relabeling
symmetry property leads to the fundamental conservation law

∂
∂τ

∇a × A( ) = 0

where

∇a ≡
∂
∂a

,
∂
∂b

,
∂
∂c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≡

∂
∂a1

,
∂

∂a2

,
∂

∂a3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

is the gradient operator in label-space,  and

A ≡ A1,A2,A3( ) = u∇a x + v∇a y + w∇az

is the “velocity measured in Lagrangian coordinates.”

This is law the most general statement of vorticity conservation for
homentropic flow.  It implies Ertel’s theorem, Kelvin’s theorem,
helicity conservation, and any other vorticity theorem you can
think of!
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Rule #1:  Every result obtained by using Hamiltonian methods
can also be obtained without using Hamiltonian methods.

This means we must be able to derive the general vorticity theorem

∂
∂τ

∇a × A( ) = 0

directly from the equations of motion.  It is instructive to do this!

The curl of the momentum equation gives the well-known vorticity
equation

D

Dt
ω + ω ∇ ⋅ v( ) = ω ⋅ ∇( )v + ∇p × ∇

1

ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟          ω ≡ ∇ × v

Combining this with the continuity equation gives

D

Dt

ω
ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

ω
ρ

⋅ ∇
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ v +

1

ρ
∇p × ∇

1

ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

In the homentropic case, p = p ρ( ), so

D

Dt

ω
ρ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

ω
ρ

⋅ ∇
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ v

This is the same equation as for an infinitesimal displacement
vector δr  between fluid particles:

d

dt
δr = δr ⋅ ∇( )v



Lecture 1, page 14 of 18

If θ  is any conserved scalar,
Dθ
Dt

= 0

then
d

dt
δr ⋅ ∇θ( ) = 0

By the analogy between 
ω
ρ  and δr  it follows that

D

Dt

ω
ρ

⋅ ∇θ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0

This is Ertel’s theorem for a homentropic fluid.

Now let
θ1 x,t( ),  θ2 x,t( ),  θ3 x,t( )

be three independent scalars satisfying:

Dθ1

Dt
= 0,

Dθ2

Dt
= 0,

Dθ3

Dt
= 0

Then                  
D

Dt
Q1,Q2,Q3( ) = 0        where        Qi =

ω
ρ

⋅ ∇θi

Think of
∇θ1,  ∇θ2,  ∇θ3

as basis vectors.
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If
v = A1∇θ1 + A2∇θ2 + A3∇θ3

and
dθ1 dθ2 dθ3 = d mass( )

Then
Q = ∇θ × A

Identifying  θ1,θ2,θ3  with a1,a2,a3  we have

∂
∂τ

∇a × A( ) = 0

This is the same conservation law that was derived more directly
from Hamilton’s principle and the particle-relabeling symmetry!
There:

A ≡ A1,A2,A3( ) = u∇a x + v∇a y + w∇az

For homentropic fluid, the conserved Q is just “ordinary vorticity
measured in Lagrangian coordinates.”

For the non-homentropic case

D

Dt

ω
ρ

⋅ ∇θ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1

ρ3 ∇θ ⋅ ∇ρ × ∇p( )

Since
p = p ρ,S( )

we have
D

Dt

ω
ρ

⋅ ∇S
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0
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To obtain the non-homentropic result from symmetry:

Note that since

E = E
∂ x( )
∂ a( )

,S a( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

the particle-label variations must satisfy

δ  
∂ x( )
∂ a( )

= 0

and

δ  S a( ) = 0

The easiest way to do this is to choose  S=c.  Then we find that

δa = −
∂
∂b

δψ a,τ( ), δb =
∂
∂a

δψ a,τ( ), δc = 0

instead of

δa = ∇a × δT a,τ( )

The more restricted variation leads to

∂
∂τ

∇a × A( ) ⋅ ∇ac[ ] =
∂
∂τ

∇ × v( ) ⋅ ∇S

ρ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0
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Overall summary:

In homentropic fluid, the particle relabeling symmetry leads to the
conservation law

∂
∂τ

∇a × A( ) = 0

where

A ≡ A,B,C( ) = u∇a x + v∇a y + w∇az

or, equivalently,

v ≡ u,v,w( ) = A∇xa + B∇xb + C∇xc

The conserved potential vorticity is a vector.

In the nonhomentropic case,

∇aS a,b,c( ) ⋅
∂
∂τ

∇a × A( ) =
∂
∂τ

∇a × A( ) ⋅ ∇aS[ ] = 0

The conserved potential vorticity is a scalar.
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Corollaries

The (homentropic) conservation law

∂
∂τ

∇a × A( ) = 0

has many consequences.

These include:

Kelvin’s theorem:

d

dt
A ⋅ da∫ =

d

dt
∫ v ⋅ dx = 0

Helicity conservation:

d

dt
da∫∫∫  A ⋅ ∇a × A( ) =

d

dt
dx∫∫∫  v ⋅ ∇x × v( ) = 0


