
Gfdnavi:
its design and implementation

with Ajax and Ruby-on-Rails

Seiya NISHIZAWA,Takeshi HORINOUCHI,
Chiemi WATANABE,

T. KOSHIRO, A. TOMOBAYASHI, S. OTSUKA,
Y. MORIKAWA, Y.-Y. HAYASHI, M. SHIOTANI, and

GFD-Dennou Davis project

Introduction

• What’s “Gfdnavi”
– A tool to archive, share, distribute, analyze, and

visualize geophysical fluid data and knowledge
– desktop use to data provide server
– fundamental technologies

• Ruby on Rails
• GPhys

An introduction was done by T. Horinouchi yesterday.

Ruby on Rails

• an open source web application framework
• written in Ruby
• Model-View-Controller (MVC) architecture
• Convention over Configuration (CoC)
• Don't repeat yourself (DRY)

• swift development
– ActiveRecord
– helper methods (HTML, JavaScript, ajax)

ActiveRecord (AR)
• a part of Rails products
• a ruby implementation of the object-relational

mapping pattern

• Do not need to use SQL
– For better performance, SQL can be used on AR.

node = Node.find(:first, :conditions=>[”id=?”,2])
SELECT * FROM nodes WHERE id=2 LIMIT 1;

path = node.path #=> “/samples”
kas = node.keyword_attributes

SELECT * FROM keyword_attributes WHERE node_id=2;

id path parent

1 / null

2 /samples 1

id node_id keyword value

1 2 description sample directory

2 2 notice just sumple

nodes table keyword_attribute table

Metadata DB

used for search

1. name-value attributes
2. geospatial- and time-coordinate information
3. owner, groups and access mode
4. link among data
5. time-stamp, size, etc

1. Name-Value attributes
• attributes in data file (self-describing files)

– unified access to attributes in differently formatted
files with GPhys

• attributes in text file
– YAML format
– any name-value attributes

gphys_nc = GPhys::IO.open(“fname.nc”,”T”) # NetCDF
gphys_nc.att_names #=> [“long_name”, …]
gphys_nc.get_att(“standard_name”) #=> “air_temperature”

gphys_grib = GPhys::IO.open(“fname.grib”, “TMP”) # GRIB
gphys_grib .att_names #=> [“long_name”, …]
gphys_grib.get_att(“standard_name”) #=> ”air_temperatrue”

description: NCEP/NCAR reanalysis
gfdnavi:

owner: user1
other_mode: 0
rgroups:
- groupA
- groupB

YAML

• a human-readable data serialization format
– easier to read/write than XML

puts “Array (list)”
ary = [0,1,2]
puts ary.to_yaml

puts “¥nHash (associative array)”
hash = {“key0”=>”value0”, ”key1”=>”value1”}
puts hash.to_yaml

Array (list)

- 0
- 1
- 2

Hash (associative array)

key1: value0
key0: value1

Back

2. Geospatial- and time-coordinate information
– spatial region

• rectangle in longitude-latitude section

– temporal region
• start time and end time

global, regional, or point swath

3. Owner, Groups, and Access mode
– permission system like i-node

• readable and writable for groups and others

– Multiple groups are allowed.

4. Link among data
– e.g. This data was calculated from these variables

Directory tree structure
• nodes in the tree structure

– node types: directories, variables, images, knowledges, etc

• Each node can have some metadata.
– inherited to children nodes

local or opendap directories
data files

variables

image files

attributes
description = “……..”
owner = userA
groups = [groupA,groupB]

description = “……..”
param1 = value1
param2 = [value21,value22]

attributes
groups

virtual aggregated files

fork a child process

Analysis model

open data file(s)

calculate draw

NetCDF PNG

analysis

draw

storage

GPhys
DB

cached get cache

output output

cache

yes

no

programmable

Analysis and Visualization

• Analysis model (Analysis class)
– all the parameters for analysis or visualization

• the form in the analysis page
• instance variables of the Analysis object

It is able to construct one from the other
• enable to reconstruct the analysis page from

• drawn image
• history list

• Draw method and analysis function are not
hard-coded.
– Their definitions are in YAML files (editable)

• one method in one file

:name: spectrum
:description: |FFT|^2 along a specific dimension
:nvars: 1
:script: |
[gphys0.fft(*arg0).abs ** 2]

:arguments:
- :description: the dimensions for spectrum
:value_type: array_string
:default: []

spectrum.yml

simple coding due to GPhys

can create and modify
via web-browser

• examples of original draw methods in a Gfdnavi
server providing an ensemble forecast data

User Interface

• bottleneck of network application
– network bandwidth
– machine power and system load of the server

• better usability
– ajax

• Rails has many helper methods to write HTML and
JavaScript to use ajax.

– cache

• Animation

Web service
• local programming
• cross-site use

– other Gfdnavi servers
– non-Gfdnavi servers

SOAP
APIs for all the analysis functions and draw methods
use the Analysis class

WSDL

(REST)

Summary
• Metadata and Directory tree structure

– attributes in self-describing data files and YAML files
– inheritance
unified access to attributes with GPhys
easy and swift development with AcriveRecord (Rails)

• Analysis/Visualization
– programmable (with text editor or web-browser)
easy and extensible coding with GPhys

• User Interface
– good usability with ajax and cache
easy development with helper methods (Rails)

Thank you

	Gfdnavi:�its design and implementation with Ajax and Ruby-on-Rails
	Introduction
	Ruby on Rails
	スライド番号 4
	Metadata DB
	スライド番号 6
	YAML
	スライド番号 8
	スライド番号 9
	Directory tree structure
	Analysis and Visualization
	スライド番号 12
	スライド番号 13
	スライド番号 14
	User Interface
	スライド番号 16
	Web service
	Summary
	Thank you

