Figures

Some results of DCPAM are compared with MGS^1 - TES^2 and MRO^3 - MCS^4 data.

¹Mars Global Surveyor ²Thermal Emission Spectrometer ³Mars Reconnaissance Orbiter ⁴Mars Climate Sounder

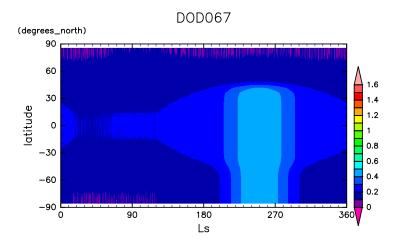


Figure 1: Daily mean dust optical depth prescribed in DCPAM

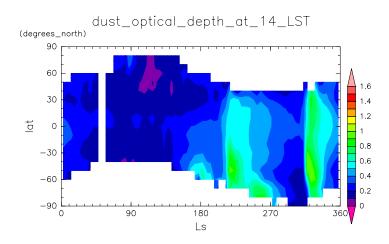


Figure 2: Double of dust optical depth observed by MGS-TES in MY26

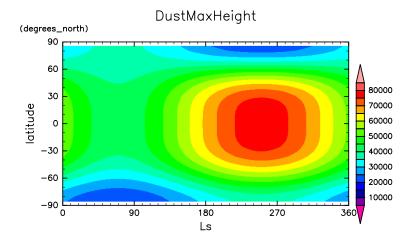
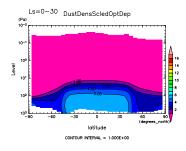
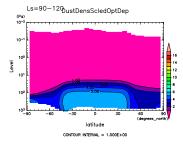




Figure 3: Daily mean maximum height of dust distribution prescribed in DC-PAM $\,$

 $L_s=0^{\circ}-30^{\circ}$ by DCPAM

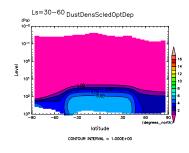
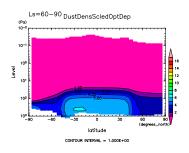
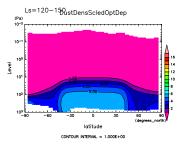




Figure 5: DustDensScledOptDep at Figure 8: DustDensScledOptDep at $L_s = 30^{\circ} - 60^{\circ}$ by DCPAM

 $L_s=60^{\circ}-90^{\circ}$ by DCPAM

Figure 4: DustDensScledOptDep at Figure 7: DustDensScledOptDep at $L_s = 90^{\circ} - 120^{\circ}$ by DCPAM

 $L_s=120^{\circ}-150^{\circ}$ by DCPAM

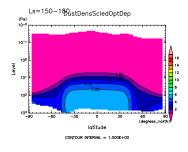
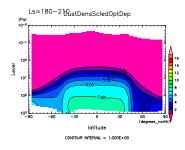
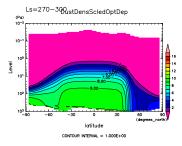
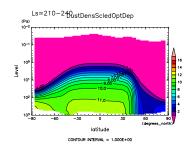
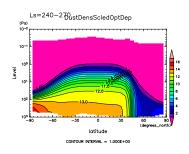





Figure 6: DustDensScledOptDep at Figure 9: DustDensScledOptDep at $\rm L_{s}{=}150^{\circ}{-}180^{\circ}$ by DCPAM



 $L_s = 180^{\circ} - 210^{\circ}$ by DCPAM

 $L_s=210^{\circ}-240^{\circ}$ by DCPAM

L_s=240°–270° by DCPAM

 $\label{eq:Figure 10: DustDensScledOptDep at Figure 13: DustDensScledOptDep at \\$ $L_s=270^{\circ}-300^{\circ}$ by DCPAM

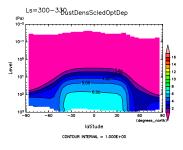


Figure 11: DustDensScledOptDep at Figure 14: DustDensScledOptDep at $L_s = 300^{\circ} - 330^{\circ}$ by DCPAM

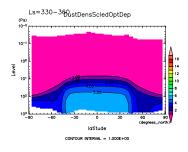
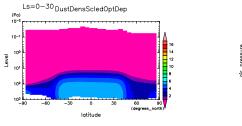
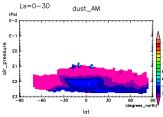




Figure 12: DustDensScledOptDep at Figure 15: DustDensScledOptDep at $\rm L_s{=}330^{\circ}{-}360^{\circ}$ by DCPAM

03 LST and Ls= 0° - 30° by DCPAM

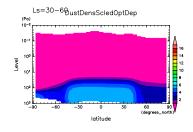


Figure 16: DustDensScledOptDep at Figure 19: DustDensScledOptDep at 03 LST and Ls= 0° - 30° by MRO

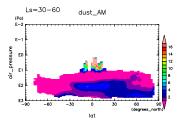
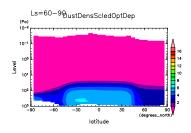



Figure 17: DustDensScledOptDep at Figure 20: DustDensScledOptDep at 03 LST and Ls= $30^{\circ}-60^{\circ}$ by DCPAM

03 LST and Ls= $60^{\circ}-90^{\circ}$ by DCPAM

03 LST and Ls= 30° - 60° by MRO

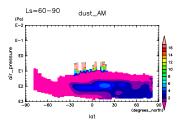
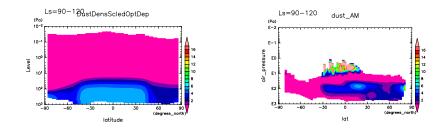
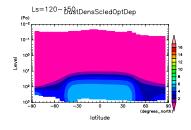




Figure 18: DustDensScledOptDep at Figure 21: DustDensScledOptDep at 03 LST and Ls=60°-90° by MRO

03 LST and Ls=90°-120° by DCPAM 03 LST and Ls=90°-120° by MRO

 $\label{eq:Figure 22: DustDensScledOptDep at Figure 25: DustDensScledOptDep at$

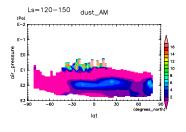
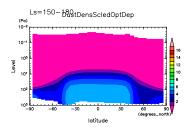



Figure 23: DustDensScledOptDep at Figure 26: DustDensScledOptDep at 03 LST and Ls= $120^{\circ}-150^{\circ}$ by DCPAM 03 LST and Ls= $120^{\circ}-150^{\circ}$ by MRO

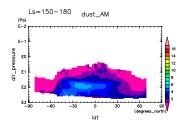
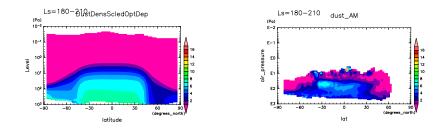
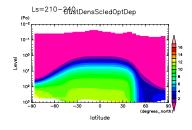




Figure 24: DustDensScledOptDep at Figure 27: DustDensScledOptDep at 03 LST and Ls=150°-180° by DCPAM $\,$ 03 LST and Ls=150°-180° by MRO $\,$

03 LST and Ls= 180° - 210° by DCPAM 03 LST and Ls= 180° - 210° by MRO

 $\label{eq:Figure 28: DustDensScledOptDep at Figure 31: DustDensScledOptDep at \\$

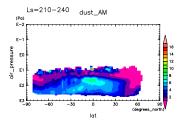
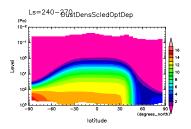



Figure 29: DustDensScledOptDep at Figure 32: DustDensScledOptDep at 03 LST and Ls= 210° - 240° by DCPAM 03 LST and Ls= 210° - 240° by MRO

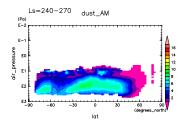
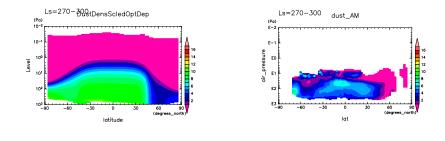



Figure 30: DustDensScledOptDep at Figure 33: DustDensScledOptDep at 03 LST and Ls=240°-270° by DCPAM $\,$ 03 LST and Ls=240°-270° by MRO $\,$

03 LST and Ls= 270° - 300° by DCPAM 03 LST and Ls= 270° - 300° by MRO

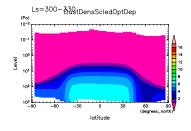


Figure 34: DustDensScledOptDep at Figure 37: DustDensScledOptDep at

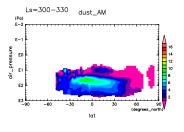
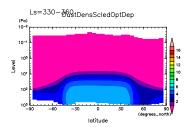



Figure 35: DustDensScledOptDep at Figure 38: DustDensScledOptDep at 03 LST and Ls= 300° - 330° by DCPAM 03 LST and Ls= 300° - 330° by MRO

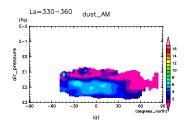
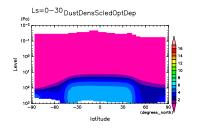
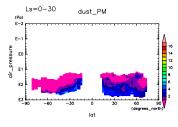
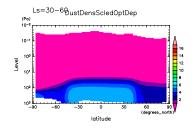





Figure 36: DustDensScledOptDep at Figure 39: DustDensScledOptDep at 03 LST and Ls=330°-360° by DCPAM $\,$ 03 LST and Ls=330°-360° by MRO $\,$

15 LST and Ls= 0° - 30° by DCPAM

 $\label{eq:Figure 40: DustDensScledOptDep at Figure 43: DustDensScledOptDep at$ 15 LST and Ls= 0° - 30° by MRO

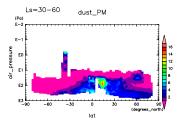
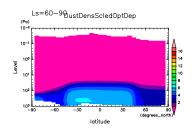



Figure 41: DustDensScledOptDep at Figure 44: DustDensScledOptDep at 15 LST and Ls= 30° - 60° by DCPAM

15 LST and Ls= $60^{\circ}-90^{\circ}$ by DCPAM

15 LST and Ls= $30^{\circ}-60^{\circ}$ by MRO

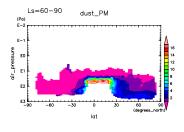
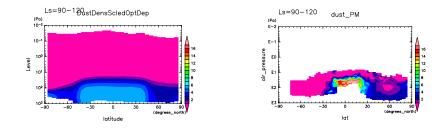



Figure 42: DustDensScledOptDep at Figure 45: DustDensScledOptDep at 15 LST and Ls= $60^{\circ}-90^{\circ}$ by MRO

15 LST and Ls=90°-120° by DCPAM $\,$ 15 LST and Ls=90°-120° by MRO $\,$

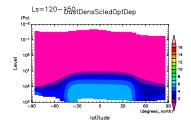


Figure 46: DustDensScledOptDep at Figure 49: DustDensScledOptDep at

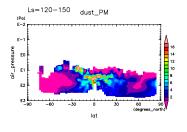
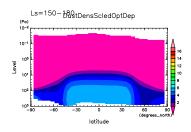



Figure 47: DustDensScledOptDep at Figure 50: DustDensScledOptDep at

 $15~\mathrm{LST}$ and Ls=150°-180° by DCPAM $~~15~\mathrm{LST}$ and Ls=150°-180° by MRO

 $15~\mathrm{LST}$ and Ls=120°-150° by DCPAM $~15~\mathrm{LST}$ and Ls=120°-150° by MRO

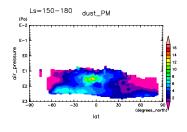
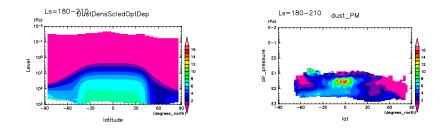



Figure 48: DustDensScledOptDep at Figure 51: DustDensScledOptDep at

15 LST and Ls= 180° - 210° by DCPAM 15 LST and Ls= 180° - 210° by MRO

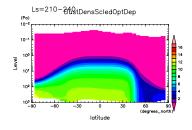
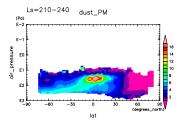



Figure 52: DustDensScledOptDep at $\,$ Figure 55: DustDensScledOptDep at $\,$

15 LST and Ls= 210° - 240° by DCPAM 15 LST and Ls= 210° - 240° by MRO

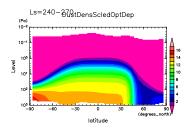


Figure 53: DustDensScledOptDep at Figure 56: DustDensScledOptDep at

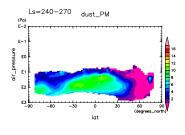
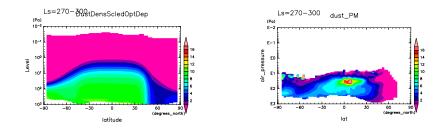
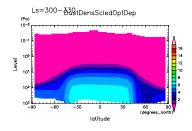




Figure 54: DustDensScledOptDep at Figure 57: DustDensScledOptDep at 15 LST and Ls=240°-270° by DCPAM $\,$ 15 LST and Ls=240°-270° by MRO $\,$

15 LST and Ls= 270° - 300° by DCPAM 15 LST and Ls= 270° - 300° by MRO

 $\label{eq:Figure 58: DustDensScledOptDep at Figure 61: DustDensScledOptDep at$

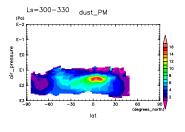
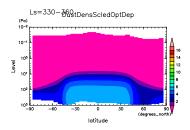



Figure 59: DustDensScledOptDep at Figure 62: DustDensScledOptDep at

 $15~\mathrm{LST}$ and Ls=300°-330° by DCPAM $~15~\mathrm{LST}$ and Ls=300°-330° by MRO

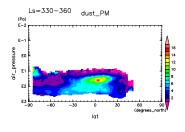
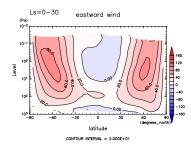
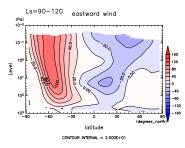




Figure 60: DustDensScledOptDep at Figure 63: DustDensScledOptDep at $15~\mathrm{LST}$ and Ls=330°-360° by DCPAM $~~15~\mathrm{LST}$ and Ls=330°-360° by MRO

 PAM

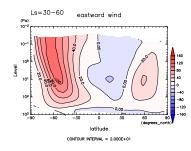


Figure 64: U at $L_s=0^{\circ}-30^{\circ}$ by DC- Figure 67: U at $L_s=90^{\circ}-120^{\circ}$ by DC-PAM

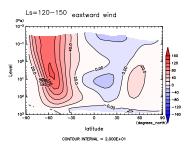


Figure 65: U at $\rm L_{s}{=}30^{\circ}{-}60^{\circ}$ by DC-PAM

 \mathbf{PAM}

Figure 68: U at $\rm L_{s}{=}120^{\circ}{-}150^{\circ}$ by DC-PAM

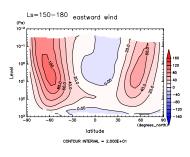
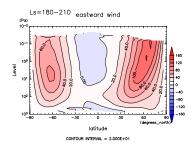



Figure 66: U at $L_s=60^{\circ}-90^{\circ}$ by DC- Figure 69: U at $L_s=150^{\circ}-180^{\circ}$ by DC- \mathbf{PAM}

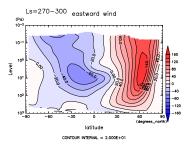


Figure 70: U at $L_s = 180^{\circ} - 210^{\circ}$ by DC- \mathbf{PAM}

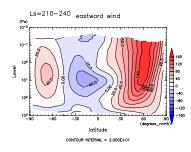


Figure 73: U at $L_s=270^{\circ}-300^{\circ}$ by DC-PAM

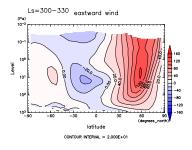
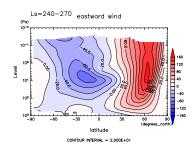



Figure 71: U at $\rm L_s{=}210^{\circ}{-}240^{\circ}$ by DC-PAM

 \mathbf{PAM}

Figure 74: U at $\rm L_s{=}300^{\circ}{-}330^{\circ}$ by DC-PAM

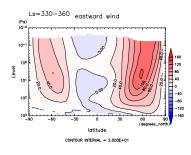
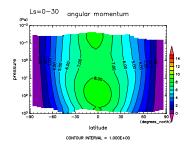



Figure 72: U at $L_s=240^{\circ}-270^{\circ}$ by DC- Figure 75: U at $L_s=330^{\circ}-360^{\circ}$ by DC- \mathbf{PAM}

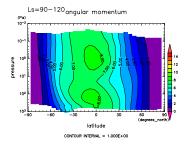


Figure 76: ANGMOM at $\rm L_{s}{=}0^{\circ}{-}30^{\circ}$ by DCPAM

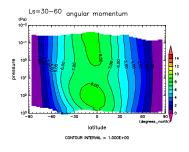


Figure 77: ANGMOM at $\rm L_s{=}30^{\circ}{-}60^{\circ}$ by DCPAM

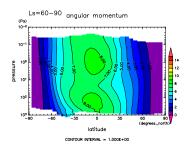


Figure 78: ANGMOM at $\rm L_{s}{=}60^{\circ}{-}90^{\circ}$ by DCPAM

Figure 79: ANGMOM at $\rm L_{s}{=}90^{\circ}{-}120^{\circ}$ by DCPAM

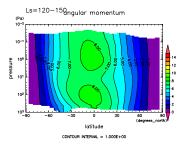


Figure 80: ANGMOM at $\rm L_{s}{=}120^{\circ}{-}150^{\circ}$ by DCPAM

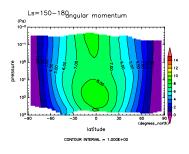
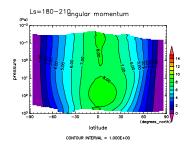
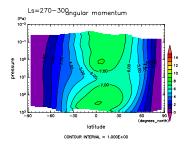
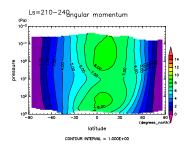
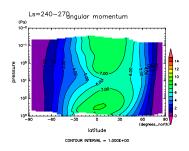





Figure 81: ANGMOM at $L_s=150^{\circ}-180^{\circ}$ by DCPAM



 210° by DCPAM

 240° by DCPAM

270° by DCPAM

Figure 82: ANGMOM at $\rm L_{s}{=}180^{\circ}{-}$ Figure 85: ANGMOM at $\rm L_{s}{=}270^{\circ}{-}$ 300° by DCPAM

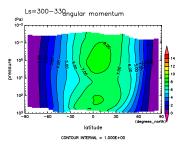


Figure 83: ANGMOM at $\rm L_{s}{=}210^{\circ}{-}$ Figure 86: ANGMOM at $\rm L_{s}{=}300^{\circ}{-}$ 330° by DCPAM

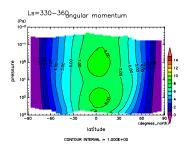
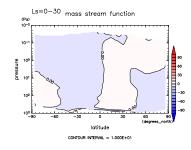
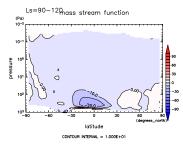
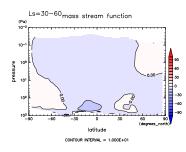
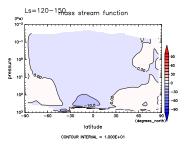
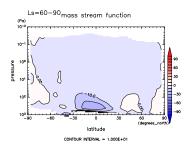



Figure 84: ANGMOM at L_s=240°- Figure 87: ANGMOM at L_s=330°-360° by DCPAM


Figure 88: MSF at $L_s=0^{\circ}-30^{\circ}$ by DC- Figure 91: MSF at $L_s=90^{\circ}-120^{\circ}$ by \mathbf{PAM}

DCPAM

DCPAM

DCPAM

Figure 89: MSF at $\rm L_s{=}30^{\circ}{-}60^{\circ}$ by Figure 92: MSF at $\rm L_s{=}120^{\circ}{-}150^{\circ}$ by DCPAM

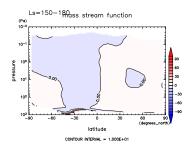
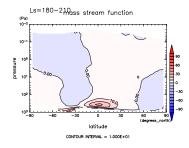
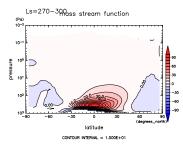




Figure 90: MSF at $L_s=60^{\circ}-90^{\circ}$ by Figure 93: MSF at $L_s=150^{\circ}-180^{\circ}$ by DCPAM

DCPAM

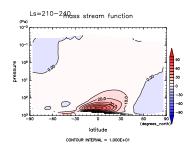
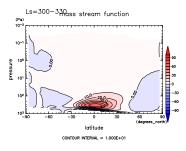
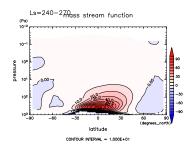




Figure 94: MSF at $L_s=180^{\circ}-210^{\circ}$ by Figure 97: MSF at $L_s=270^{\circ}-300^{\circ}$ by DCPAM

DCPAM

DCPAM

Figure 95: MSF at $\rm L_s{=}210^{\circ}{-}240^{\circ}$ by $\,$ Figure 98: MSF at $\rm L_s{=}300^{\circ}{-}330^{\circ}$ by DCPAM

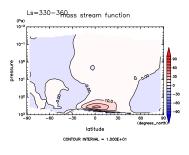
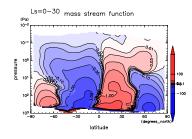
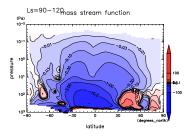




Figure 96: MSF at $\rm L_s{=}240^{\circ}{-}270^{\circ}$ by $\,$ Figure 99: MSF at $\rm L_s{=}330^{\circ}{-}360^{\circ}$ by DCPAM

DCPAM

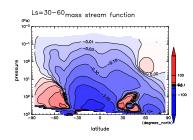
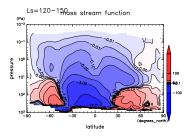
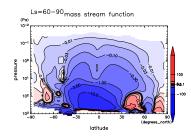




Figure 100: MSF at $\rm L_{s}{=}0^{\circ}{-}30^{\circ}$ by Figure 103: MSF at $\rm L_{s}{=}90^{\circ}{-}120^{\circ}$ by DČPAM

DCPAM

DCPAM

Figure 101: MSF at $\rm L_{s}{=}30^{\circ}{-}60^{\circ}$ by \rm Figure 104: MSF at $\rm L_{s}{=}120^{\circ}{-}150^{\circ}$ by DCPAM

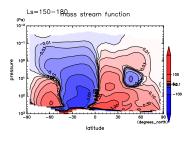
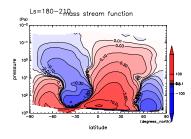
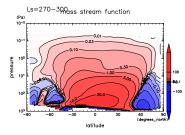




Figure 102: MSF at $L_s=60^{\circ}-90^{\circ}$ by Figure 105: MSF at $L_s=150^{\circ}-180^{\circ}$ by DCPAM

DCPAM

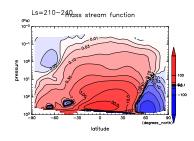
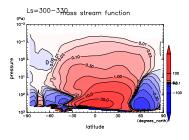
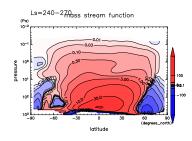




Figure 106: MSF at $L_s = 180^{\circ} - 210^{\circ}$ by Figure 109: MSF at $L_s = 270^{\circ} - 300^{\circ}$ by DCPAM

DCPAM

DCPAM

Figure 107: MSF at $\rm L_s{=}210^{\circ}{-}240^{\circ}$ by ~ Figure 110: MSF at $\rm L_s{=}300^{\circ}{-}330^{\circ}$ by DCPAM

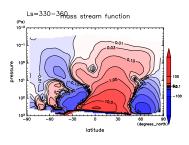
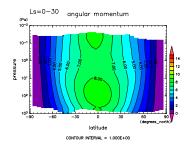



Figure 108: MSF at $\rm L_s{=}240^{\circ}{-}270^{\circ}$ by ~ Figure 111: MSF at $\rm L_s{=}330^{\circ}{-}360^{\circ}$ by DCPAM

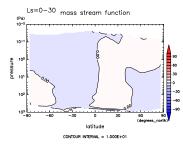


Figure 112: ANGMOM at $\rm L_s{=}0^{\circ}{-}30^{\circ}$ by DCPAM

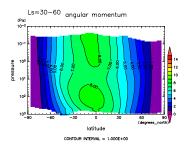
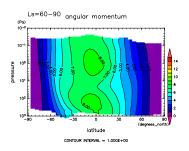



Figure 113: ANGMOM at $L_s=30^{\circ} 60^{\circ}$ by DCPAM

 90° by DCPAM

Figure 115: MSF at $L_s=0^{\circ}-30^{\circ}$ by DCPAM

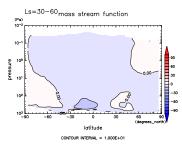


Figure 116: MSF at $\rm L_s{=}30^{\circ}{-}60^{\circ}$ by DCPAM

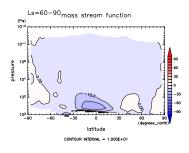
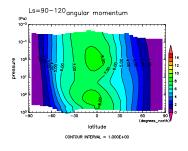



Figure 114: ANGMOM at $\rm L_{s}{=}60^{\circ}{-}$ Figure 117: MSF at $\rm L_{s}{=}60^{\circ}{-}90^{\circ}$ by DCPAM

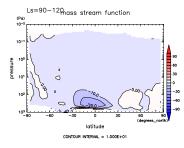


Figure 118: ANGMOM at $\rm L_{s}{=}90^{\circ}{-}$ 120° by DCPAM

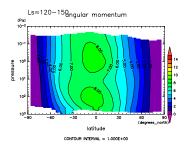
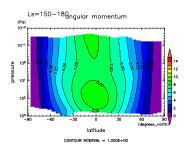



Figure 119: ANGMOM at $L_s=120^{\circ} 150^{\circ}$ by DCPAM

 180° by DCPAM

Figure 121: MSF at $L_s=90^{\circ}-120^{\circ}$ by DCPAM

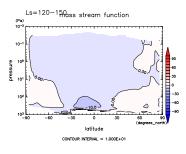


Figure 122: MSF at $\rm L_{s}{=}120^{\circ}{-}150^{\circ}$ by DCPAM

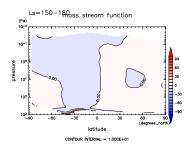
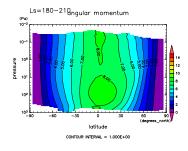



Figure 120: ANGMOM at L_s=150°– Figure 123: MSF at L_s=150°–180° by DCPAM

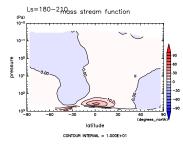


Figure 124: ANGMOM at $L_s=180^{\circ} 210^{\circ}$ by DCPAM

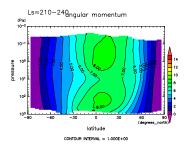
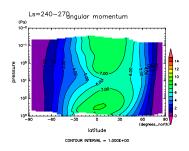



Figure 125: ANGMOM at $L_s=210^{\circ} 240^{\circ}$ by DCPAM

270° by DCPAM

Figure 127: MSF at $L_s = 180^{\circ} - 210^{\circ}$ by DCPAM

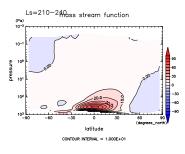


Figure 128: MSF at $\rm L_{s}{=}210^{\circ}{-}240^{\circ}$ by DCPAM

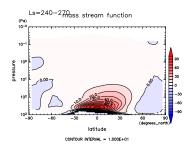
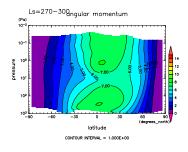



Figure 126: ANGMOM at L_s=240°– $\,$ Figure 129: MSF at L_s=240°–270° by DCPAM

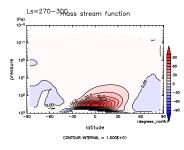


Figure 130: ANGMOM at $L_s=270^{\circ}-$ 300° by DCPAM

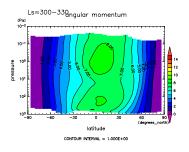
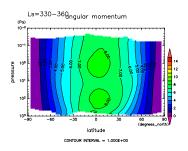



Figure 131: ANGMOM at $L_s=300^{\circ} 330^{\circ}$ by DCPAM

360° by DCPAM

Figure 133: MSF at $L_s=270^{\circ}-300^{\circ}$ by DCPAM

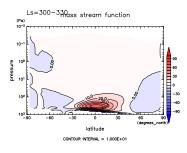


Figure 134: MSF at $\rm L_{s}{=}300^{\circ}{-}330^{\circ}$ by DCPAM

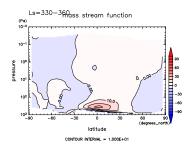
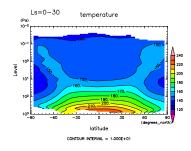
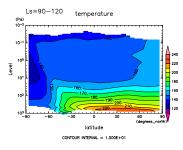




Figure 132: ANGMOM at L_s=330°– $\,$ Figure 135: MSF at L_s=330°–360° by DCPAM

DCPAM

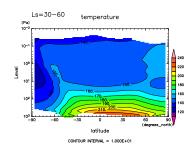
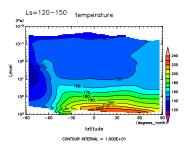
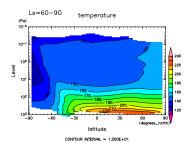




Figure 136: Temp at $L_s=0^{\circ}-30^{\circ}$ by Figure 139: Temp at $L_s=90^{\circ}-120^{\circ}$ by DCPAM

DCPAM

DCPAM

Figure 137: Temp at $L_s=30^{\circ}-60^{\circ}$ by Figure 140: Temp at $L_s=120^{\circ}-150^{\circ}$ by DCPAM

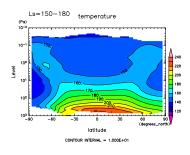
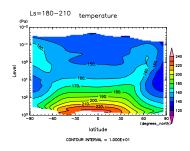
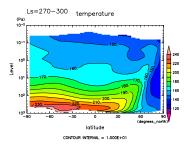




Figure 138: Temp at $L_s=60^{\circ}-90^{\circ}$ by Figure 141: Temp at $L_s=150^{\circ}-180^{\circ}$ by DCPAM

DCPAM

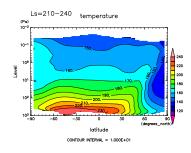
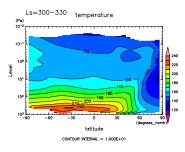
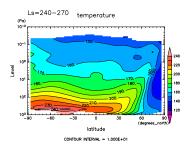




Figure 142: Temp at $L_s=180^{\circ}-210^{\circ}$ by Figure 145: Temp at $L_s=270^{\circ}-300^{\circ}$ by DCPAM

DCPAM

DCPAM

Figure 143: Temp at $\rm L_s{=}210^{\circ}{-}240^{\circ}$ by ~ Figure 146: Temp at $\rm L_s{=}300^{\circ}{-}330^{\circ}$ by DCPAM

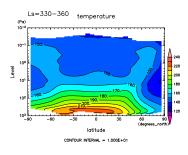
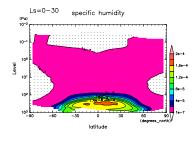



Figure 144: Temp at $L_s=240^{\circ}-270^{\circ}$ by Figure 147: Temp at $L_s=330^{\circ}-360^{\circ}$ by DCPAM

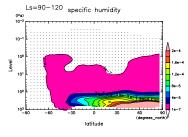


Figure 148: QH2OVap at $\rm L_{s}{=}0^{\circ}{-}30^{\circ}$ by DCPAM

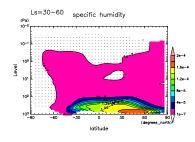


Figure 151: QH2OVap at L_s=90°– 120° by DCPAM

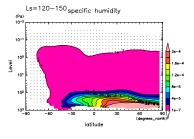


Figure 149: QH2OVap at $\rm L_s{=}30^{\circ}{-}60^{\circ}$ by DCPAM

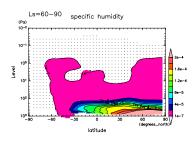


Figure 150: QH2OVap at $\rm L_{s}{=}60^{\circ}{-}90^{\circ}$ by DCPAM

Figure 152: QH2OVap at $\rm L_{s}{=}120^{\circ}{-}150^{\circ}$ by DCPAM

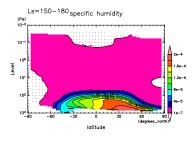
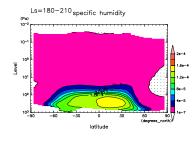
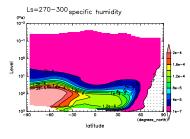




Figure 153: QH2OVap at L_s=150°– 180° by DCPAM

 210° by DCPAM

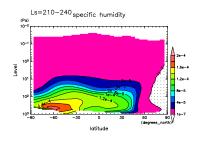
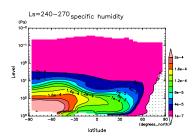
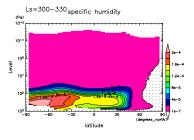




Figure 155: QH2OVap at L_s=210°– Figure 158: QH2OVap at L_s=300°– 240° by DCPAM

270° by DCPAM

Figure 154: QH2OVap at L_s=180°– Figure 157: QH2OVap at L_s=270°– 300° by DCPAM

 330° by DCPAM

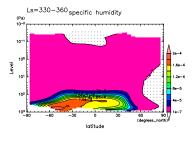
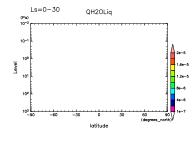



Figure 156: QH2OVap at L_s=240°- Figure 159: QH2OVap at L_s=330°-360° by DCPAM

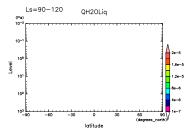


Figure 160: QH2OLiq at $\rm L_{s}{=}0^{\circ}{-}30^{\circ}$ by DCPAM

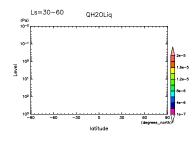


Figure 163: QH2OLiq at $\rm L_{s}{=}90^{\circ}{-}120^{\circ}$ by DCPAM

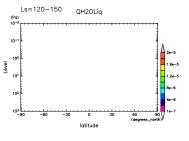


Figure 161: QH2OLiq at $\rm L_s{=}30^{\circ}{-}60^{\circ}$ by DCPAM

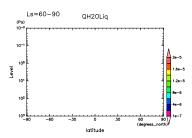


Figure 162: QH2OLiq at L_s=60°–90° by DCPAM

Figure 164: QH2OLiq at $\rm L_{s}{=}120^{\circ}{-}150^{\circ}$ by DCPAM

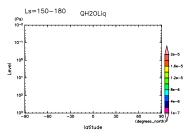
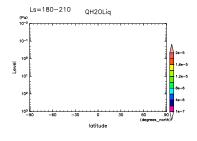
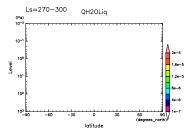




Figure 165: QH2OLiq at L_s=150°– 180° by DCPAM

 210° by DCPAM

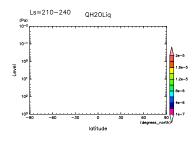
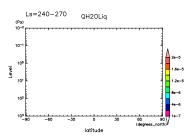



Figure 166: QH2OLiq at L_s=180°– Figure 169: QH2OLiq at L_s=270°– 300° by DCPAM

Figure 167: QH2OLiq at L_s=210°- Figure 170: QH2OLiq at L_s=300°- 240° by DCPAM

270° by DCPAM

 330° by DCPAM

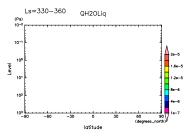
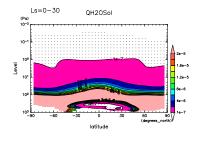



Figure 168: QH2OLiq at $L_s=240^{\circ}$ – Figure 171: QH2OLiq at $L_s=330^{\circ}$ – 360° by DCPAM

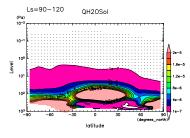


Figure 172: QH2OSol at $\rm L_{s}{=}0^{\circ}{-}30^{\circ}$ by DCPAM

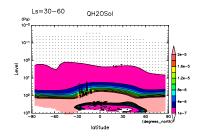


Figure 175: QH2OSol at $\rm L_{s}{=}90^{\circ}{-}120^{\circ}$ by DCPAM

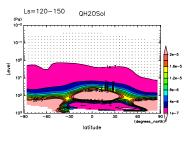


Figure 173: QH2OSol at $\rm L_s{=}30^{\circ}{-}60^{\circ}$ by DCPAM

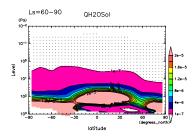


Figure 174: QH2OSol at $\rm L_{s}{=}60^{\circ}{-}90^{\circ}$ by DCPAM

Figure 176: QH2OSol at $\rm L_{s}{=}120^{\circ}{-}150^{\circ}$ by DCPAM

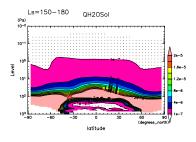
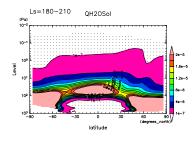



Figure 177: QH2OSol at $\rm L_{s}{=}150^{\circ}{-}$ 180° by DCPAM

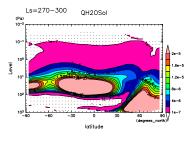
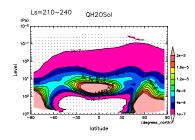



Figure 178: QH2OSol at L_s=180°– Figure 181: QH2OSol at L_s=270°– 210° by DCPAM

 300° by DCPAM

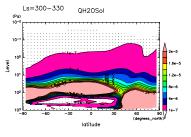
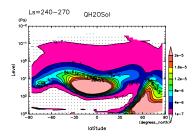



Figure 179: QH2OSol at L_s=210°- Figure 182: QH2OSol at L_s=300°- 240° by DCPAM

270° by DCPAM

330° by DCPAM

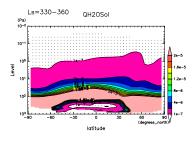
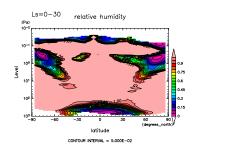
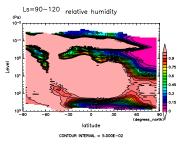




Figure 180: QH2OSol at $\rm L_{s}{=}240^{\circ}{-}$ Figure 183: QH2OSol at $\rm L_{s}{=}330^{\circ}{-}$ 360° by DCPAM

 PAM

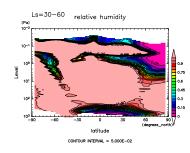
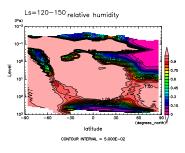
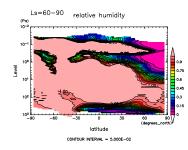




Figure 184: RH at $L_s=0^{\circ}-30^{\circ}$ by DC- Figure 187: RH at $L_s=90^{\circ}-120^{\circ}$ by DCPAM

DCPAM

DCPAM

Figure 185: RH at $\rm L_{s}{=}30^{\circ}{-}60^{\circ}$ by Figure 188: RH at $\rm L_{s}{=}120^{\circ}{-}150^{\circ}$ by DCPAM

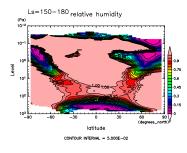
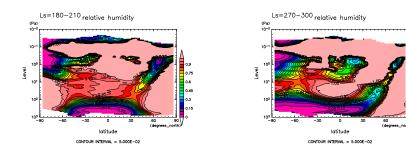



Figure 186: RH at $L_s=60^{\circ}-90^{\circ}$ by Figure 189: RH at $L_s=150^{\circ}-180^{\circ}$ by DCPAM

DCPAM

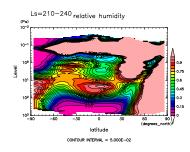
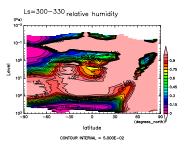
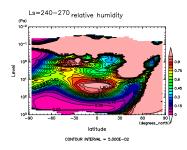




Figure 190: RH at $L_s=180^{\circ}-210^{\circ}$ by Figure 193: RH at $L_s=270^{\circ}-300^{\circ}$ by DCPAM

DCPAM

DCPAM

Figure 191: RH at $\rm L_s{=}210^{\circ}{-}240^{\circ}$ by $\,$ Figure 194: RH at $\rm L_s{=}300^{\circ}{-}330^{\circ}$ by DCPAM

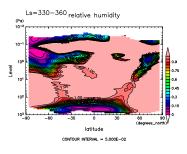
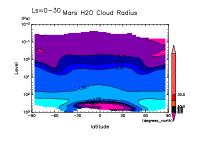
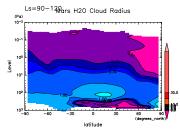




Figure 192: RH at $\rm L_s{=}240^{\circ}{-}270^{\circ}$ by \rm Figure 195: RH at $\rm L_s{=}330^{\circ}{-}360^{\circ}$ by DCPAM

 $\rm L_{s}{=}0^{\circ}{-}30^{\circ}$ by DCPAM

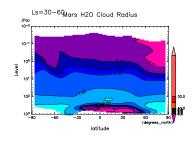


Figure 196: H_2O cloud radius at Figure 199: H_2O cloud radius at $L_s=90^\circ-120^\circ$ by DCPAM

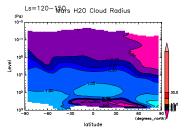
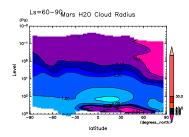



Figure 197: H_2O cloud radius at Figure 200: H_2O cloud radius at $L_s=30^{\circ}-60^{\circ}$ by DCPAM

 $L_s = 60^{\circ} - 90^{\circ}$ by DCPAM

 $L_s = 120^{\circ} - 150^{\circ}$ by DCPAM

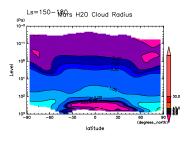
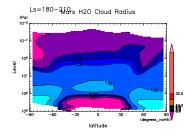



Figure 198: H_2O cloud radius at Figure 201: H_2O cloud radius at $\rm L_{s}{=}150^{\circ}{-}180^{\circ}$ by DCPAM

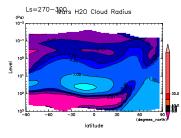
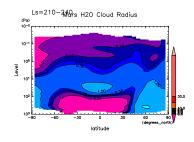



Figure 202: H_2O cloud radius at Figure 205: H_2O cloud radius at $L_s = 180^{\circ} - 210^{\circ}$ by DCPAM

 $L_s=270^{\circ}-300^{\circ}$ by DCPAM

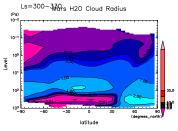
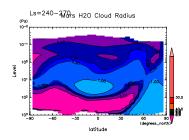



Figure 203: H_2O cloud radius at Figure 206: H_2O cloud radius at $L_s=210^\circ-240^\circ$ by DCPAM

 $L_s=240^{\circ}-270^{\circ}$ by DCPAM

 $L_s = 300^{\circ} - 330^{\circ}$ by DCPAM

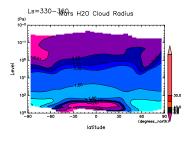
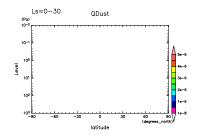
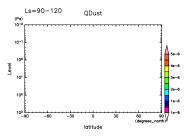




Figure 204: H₂O cloud radius at Figure 207: H₂O cloud radius at $\rm L_s{=}330^{\circ}{-}360^{\circ}$ by DCPAM

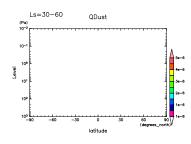
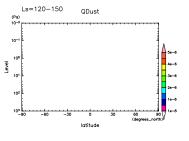
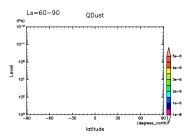




Figure 208: QDust at $\rm L_{s}{=}0^{\circ}{-}30^{\circ}$ by $$Figure 211: QDust at L_{s}{=}90^{\circ}{-}120^{\circ}$ by DCPAM $DCPAM$}$

DCPAM

DCPAM

Figure 209: QDust at $\rm L_{s}{=}30^{\circ}{-}60^{\circ}$ by $\,$ Figure 212: QDust at $\rm L_{s}{=}120^{\circ}{-}150^{\circ}$ by DCPAM

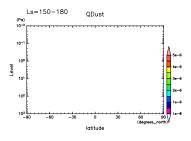
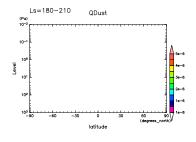



Figure 210: QDust at $\rm L_{s}{=}60^{\circ}{-}90^{\circ}$ by $\,$ Figure 213: QDust at $\rm L_{s}{=}150^{\circ}{-}180^{\circ}$ by DCPAM

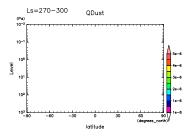


Figure 214: QDust at $\rm L_s{=}180^{\circ}{-}210^{\circ}$ by DCPAM

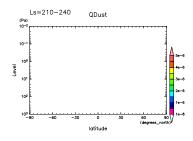


Figure 217: QDust at $\rm L_{s}{=}270^{\circ}{-}300^{\circ}$ by DCPAM

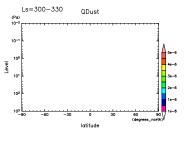


Figure 215: QDust at $\rm L_s{=}210^{\circ}{-}240^{\circ}$ by DCPAM

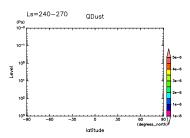


Figure 216: QDust at $\rm L_s{=}240^{\circ}{-}270^{\circ}$ by DCPAM

Figure 218: QDust at $\rm L_{s}{=}300^{\circ}{-}330^{\circ}$ by DCPAM

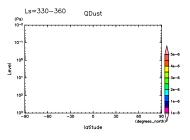


Figure 219: QDust at $\rm L_{s}{=}330^{\circ}{-}360^{\circ}$ by DCPAM

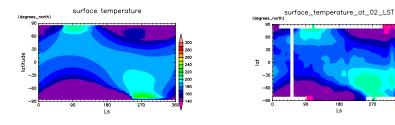


Figure 220: $\mathrm{T_s}$ at 02 LST by DCPAM

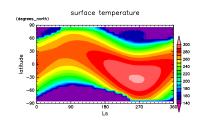


Figure 222: $\mathrm{T_s}$ at 02 LST by MGS

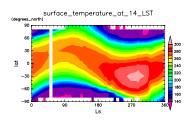


Figure 221: $\mathrm{T_s}$ at 14 LST by DCPAM

Figure 223: $\mathrm{T_s}$ at 14 LST by MGS

Figure 224: T at 18 Pa and at 02 LST by DCPAM

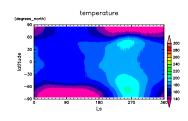


Figure 225: T at 50 Pa and at 02 LST by DCPAM

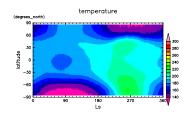


Figure 226: T at 136 Pa and at 02 LST by DCPAM

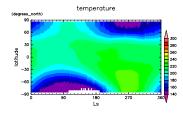


Figure 227: T at 370 Pa and at 02 LST by DCPAM

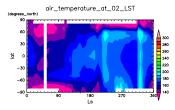


Figure 228: T at 18 Pa and at 02 LST by MGS $\,$

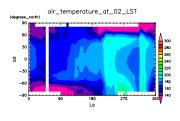
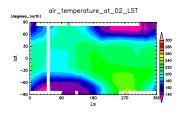



Figure 229: T at 50 Pa and at 02 LST by MGS $\,$

Figure 230: T at 136 Pa and at 02 LST by MGS

41

Figure 231: T at 370 Pa and at 02 LST by MGS $\,$

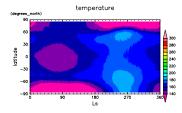


Figure 232: T at 18 Pa and at 14 LST by DCPAM

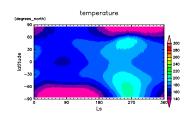


Figure 233: T at 50 Pa and at 14 LST by DCPAM

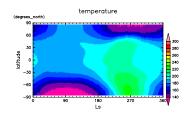


Figure 234: T at 136 Pa and at 14 LST by DCPAM

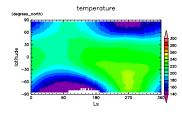


Figure 235: T at 370 Pa and at 14 LST by DCPAM $\,$

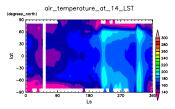


Figure 236: T at 18 Pa and at 14 LST by MGS $\,$

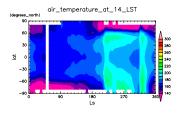


Figure 237: T at 50 Pa and at 14 LST by MGS $\,$

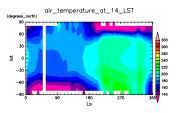
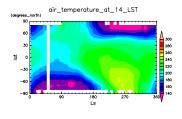
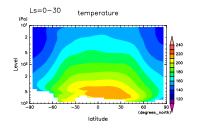
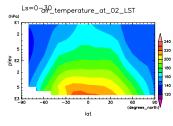
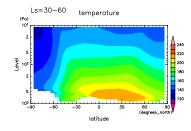
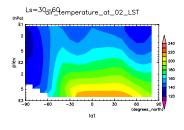
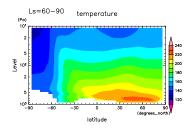




Figure 238: T at 136 Pa and at 14 LST by MGS $\,$

42

Figure 239: T at 370 Pa and at 14 LST by MGS $\,$


Figure 240: Temp at 02 LST and Figure 243: Temp at 02 LST and $Ls=0^{\circ}-30^{\circ}$ by DCPAM

 $Ls=0^{\circ}-30^{\circ}$ by MGS

Ls= 30° - 60° by DCPAM

Ls=60°-90° by DCPAM

Figure 241: Temp at 02 LST and Figure 244: Temp at 02 LST and Ls= 30° - 60° by MGS

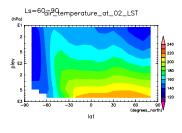


Figure 242: Temp at 02 LST and Figure 245: Temp at 02 LST and Ls=60°-90° by MGS

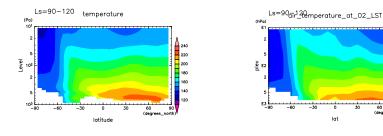
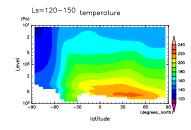



Figure 246: Temp at 02 LST and Figure 249: Temp at 02 LST and $Ls=90^{\circ}-120^{\circ}$ by DCPAM

 $Ls=90^{\circ}-120^{\circ}$ by MGS

lat

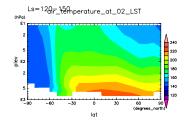
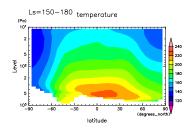



Figure 247: Temp at 02 LST and Figure 250: Temp at 02 LST and $Ls=120^{\circ}-150^{\circ}$ by DCPAM

Ls= 150° - 180° by DCPAM

Ls= 120° - 150° by MGS

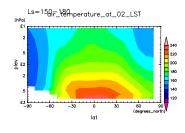
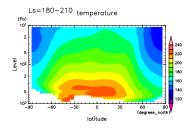
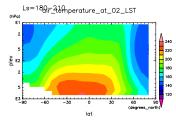
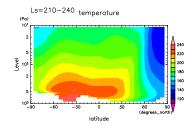
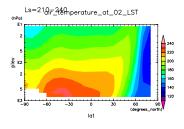
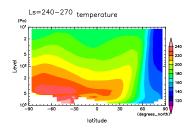



Figure 248: Temp at 02 LST and Figure 251: Temp at 02 LST and Ls=150°-180° by MGS


Figure 252: Temp at 02 LST and Figure 255: Temp at 02 LST and $Ls=180^{\circ}-210^{\circ}$ by DCPAM

 $Ls=180^{\circ}-210^{\circ}$ by MGS

Ls= 210° - 240° by DCPAM

 $Ls=240^{\circ}-270^{\circ}$ by DCPAM

Figure 253: Temp at 02 LST and Figure 256: Temp at 02 LST and Ls= 210° - 240° by MGS

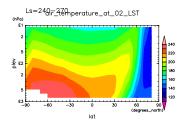
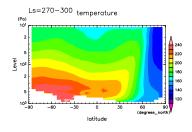
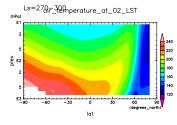
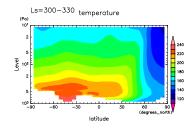
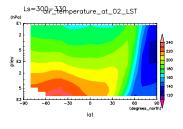
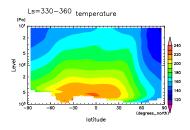



Figure 254: Temp at 02 LST and Figure 257: Temp at 02 LST and Ls=240°-270° by MGS


Figure 258: Temp at 02 LST and Figure 261: Temp at 02 LST and $Ls=270^{\circ}-300^{\circ}$ by DCPAM

 $Ls=270^{\circ}-300^{\circ}$ by MGS

Ls= 300° - 330° by DCPAM

 $Ls=330^{\circ}-360^{\circ}$ by DCPAM

Figure 259: Temp at 02 LST and Figure 262: Temp at 02 LST and $Ls=300^{\circ}-330^{\circ}$ by MGS

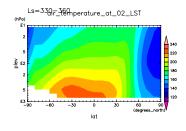
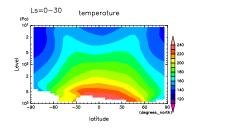



Figure 260: Temp at 02 LST and Figure 263: Temp at 02 LST and Ls=330°-360° by MGS

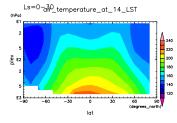
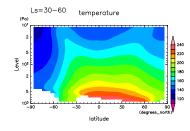



Figure 264: Temp at 14 LST and Figure 267: Temp at 14 LST and $Ls=0^{\circ}-30^{\circ}$ by DCPAM

 $Ls=0^{\circ}-30^{\circ}$ by MGS

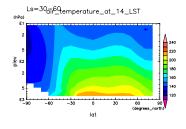
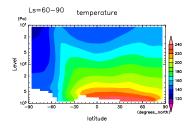



Figure 265: Temp at 14 LST and Figure 268: Temp at 14 LST and $Ls=30^{\circ}-60^{\circ}$ by DCPAM

Ls=60°-90° by DCPAM

Ls= 30° - 60° by MGS

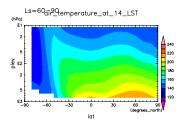
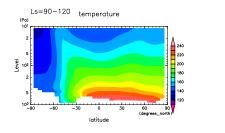
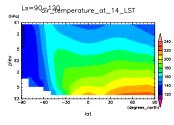
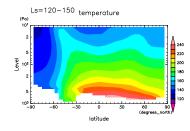
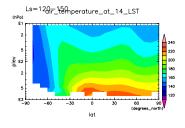
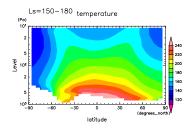



Figure 266: Temp at 14 LST and Figure 269: Temp at 14 LST and Ls=60°-90° by MGS


Figure 270: Temp at 14 LST and Figure 273: Temp at 14 LST and $Ls=90^{\circ}-120^{\circ}$ by DCPAM

 $Ls=90^{\circ}-120^{\circ}$ by MGS

 $Ls=120^{\circ}-150^{\circ}$ by DCPAM

Ls=150°-180° by DCPAM

Figure 271: Temp at 14 LST and Figure 274: Temp at 14 LST and $Ls=120^{\circ}-150^{\circ}$ by MGS

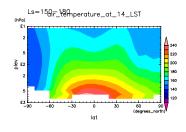
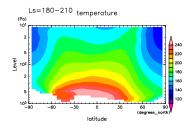



Figure 272: Temp at 14 LST and Figure 275: Temp at 14 LST and Ls=150°-180° by MGS

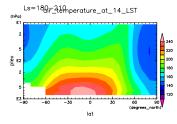
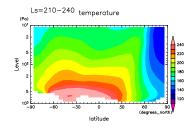



Figure 276: Temp at 14 LST and Figure 279: Temp at 14 LST and $Ls=180^{\circ}-210^{\circ}$ by DCPAM

 $Ls=180^{\circ}-210^{\circ}$ by MGS

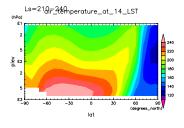
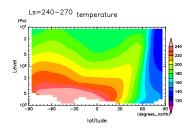



Figure 277: Temp at 14 LST and Figure 280: Temp at 14 LST and $Ls=210^{\circ}-240^{\circ}$ by DCPAM

 $Ls=240^{\circ}-270^{\circ}$ by DCPAM

 $Ls=210^{\circ}-240^{\circ}$ by MGS

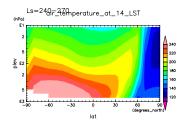
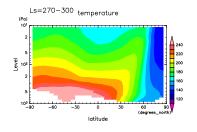



Figure 278: Temp at 14 LST and Figure 281: Temp at 14 LST and Ls= $240^{\circ}-270^{\circ}$ by MGS

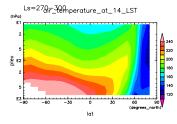
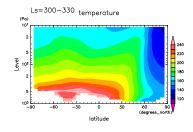



Figure 282: Temp at 14 LST and Figure 285: Temp at 14 LST and $Ls=270^{\circ}-300^{\circ}$ by DCPAM

 $Ls=270^{\circ}-300^{\circ}$ by MGS

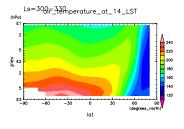
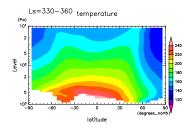



Figure 283: Temp at 14 LST and Figure 286: Temp at 14 LST and Ls= 300° - 330° by DCPAM

Ls=330°-360° by DCPAM

 $Ls=300^{\circ}-330^{\circ}$ by MGS

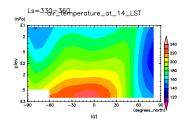
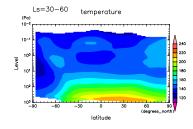



Figure 284: Temp at 14 LST and Figure 287: Temp at 14 LST and Ls=330°-360° by MGS

Figure 288: Temp at 03 LST and Figure 291: Temp at 03 LST and $Ls=0^{\circ}-30^{\circ}$ by DCPAM

 $Ls=0^{\circ}-30^{\circ}$ by MRO

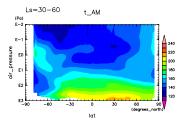
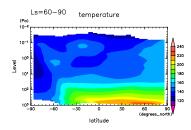



Figure 289: Temp at 03 LST and Figure 292: Temp at 03 LST and Ls= 30° - 60° by DCPAM

Ls=60°-90° by DCPAM

Ls= $30^{\circ}-60^{\circ}$ by MRO

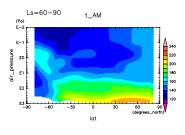
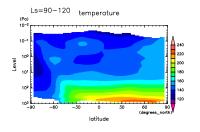



Figure 290: Temp at 03 LST and Figure 293: Temp at 03 LST and Ls=60°-90° by MRO

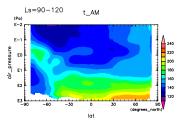
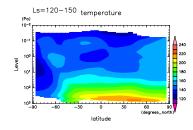



Figure 294: Temp at 03 LST and Figure 297: Temp at 03 LST and $Ls=90^{\circ}-120^{\circ}$ by DCPAM

 $Ls=90^{\circ}-120^{\circ}$ by MRO

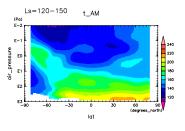
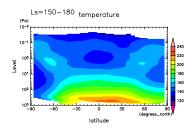



Figure 295: Temp at 03 LST and Figure 298: Temp at 03 LST and Ls= 120° - 150° by DCPAM

Ls=150°-180° by DCPAM

Ls= 120° - 150° by MRO

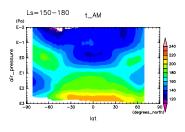
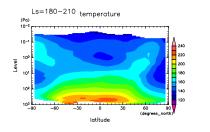



Figure 296: Temp at 03 LST and Figure 299: Temp at 03 LST and Ls=150°-180° by MRO

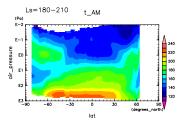
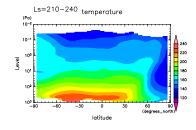



Figure 300: Temp at 03 LST and Figure 303: Temp at 03 LST and $Ls=180^{\circ}-210^{\circ}$ by DCPAM

 $Ls=180^{\circ}-210^{\circ}$ by MRO

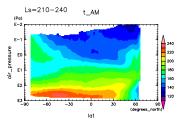
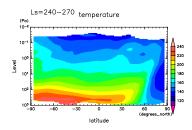



Figure 301: Temp at 03 LST and Figure 304: Temp at 03 LST and Ls= 210° - 240° by DCPAM

Ls=240°-270° by DCPAM

Ls=210°-240° by MRO

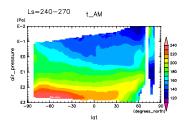
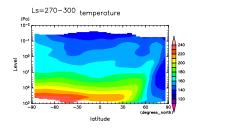



Figure 302: Temp at 03 LST and Figure 305: Temp at 03 LST and Ls= 240° - 270° by MRO

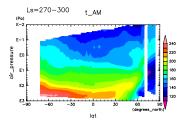
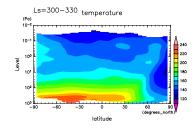



Figure 306: Temp at 03 LST and Figure 309: Temp at 03 LST and $Ls=270^{\circ}-300^{\circ}$ by DCPAM

 $Ls=270^{\circ}-300^{\circ}$ by MRO

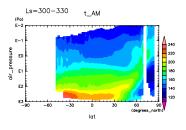
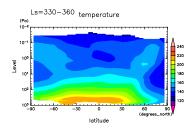



Figure 307: Temp at 03 LST and Figure 310: Temp at 03 LST and Ls= 300° - 330° by DCPAM

Ls=330°-360° by DCPAM

 $Ls=300^{\circ}-330^{\circ}$ by MRO

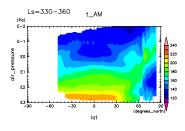
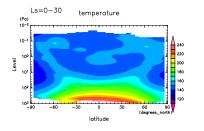



Figure 308: Temp at 03 LST and Figure 311: Temp at 03 LST and Ls= 330° - 360° by MRO

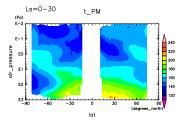
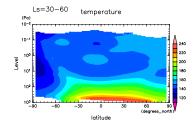



Figure 312: Temp at 15 LST and Figure 315: Temp at 15 LST and $Ls=0^{\circ}-30^{\circ}$ by DCPAM

 $Ls=0^{\circ}-30^{\circ}$ by MRO

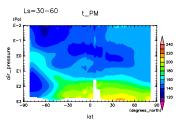
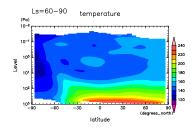



Figure 313: Temp at 15 LST and Figure 316: Temp at 15 LST and Ls= 30° - 60° by DCPAM

Ls=60°-90° by DCPAM

Ls= $30^{\circ}-60^{\circ}$ by MRO

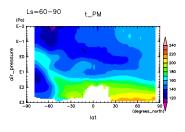
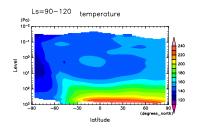



Figure 314: Temp at 15 LST and Figure 317: Temp at 15 LST and Ls=60°-90° by MRO

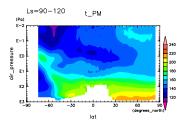
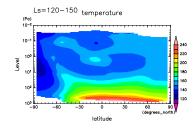



Figure 318: Temp at 15 LST and Figure 321: Temp at 15 LST and $Ls=90^{\circ}-120^{\circ}$ by DCPAM

 $Ls=90^{\circ}-120^{\circ}$ by MRO

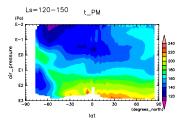
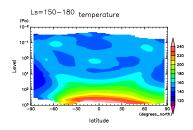



Figure 319: Temp at 15 LST and Figure 322: Temp at 15 LST and Ls= 120° - 150° by DCPAM

Ls= 150° - 180° by DCPAM

Ls= 120° - 150° by MRO

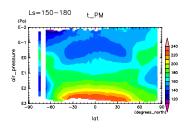
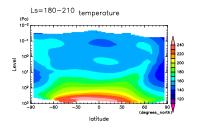
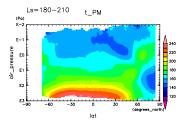
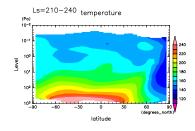
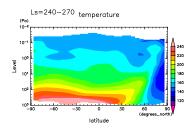



Figure 320: Temp at 15 LST and Figure 323: Temp at 15 LST and Ls=150°-180° by MRO


Figure 324: Temp at 15 LST and Figure 327: Temp at 15 LST and $Ls=180^{\circ}-210^{\circ}$ by DCPAM

 $Ls=180^{\circ}-210^{\circ}$ by MRO

Figure 325: Temp at 15 LST and Figure 328: Temp at 15 LST and Ls= 210° - 240° by DCPAM

Ls=240°-270° by DCPAM

Ls= 210° - 240° by MRO

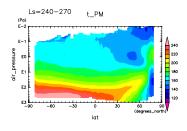
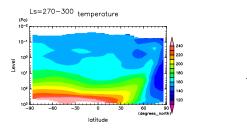



Figure 326: Temp at 15 LST and Figure 329: Temp at 15 LST and Ls=240°-270° by MRO

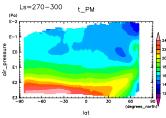
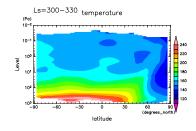



Figure 330: Temp at 15 LST and Figure 333: Temp at 15 LST and $Ls=270^{\circ}-300^{\circ}$ by DCPAM

 $Ls=270^{\circ}-300^{\circ}$ by MRO

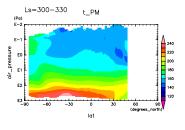
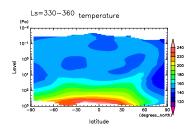



Figure 331: Temp at 15 LST and Figure 334: Temp at 15 LST and Ls= 300° - 330° by DCPAM

Ls=330°-360° by DCPAM

 $Ls=300^{\circ}-330^{\circ}$ by MRO

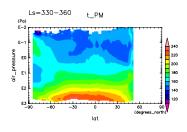


Figure 332: Temp at 15 LST and Figure 335: Temp at 15 LST and Ls= 330° - 360° by MRO

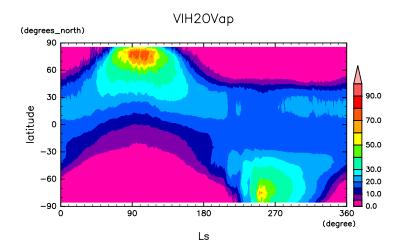


Figure 336: Water vapor column density by DCPAM (precipitable micron meter) $% \left({{{\rm{DCPAM}}}} \right)$

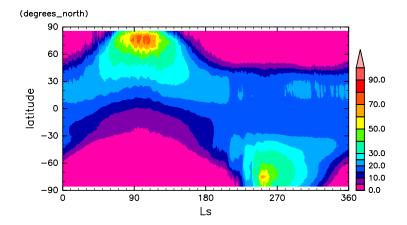


Figure 337: Column integrated water vapor by DCPAM

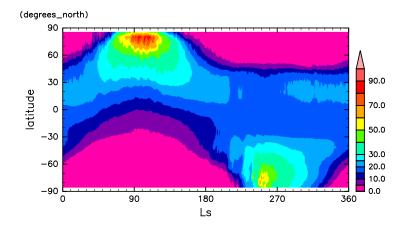


Figure 338: Column integrated water vapor by DCPAM

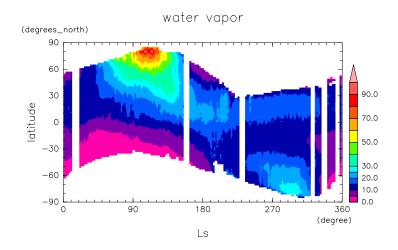


Figure 339: Column integrated water vapor observed by MGS-TES in MY25

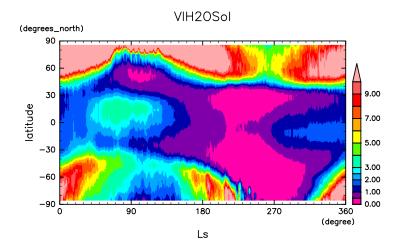


Figure 340: Water ice column density by DCPAM (precipitable micron meter)

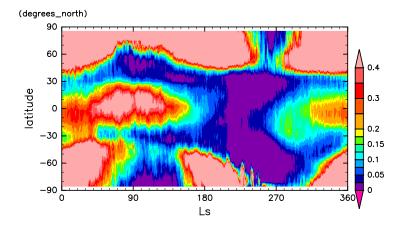


Figure 341: Optical depth of water ice by DCPAM

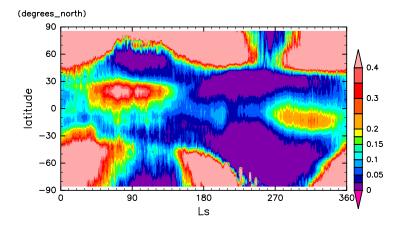


Figure 342: Optical depth of water ice by DCPAM

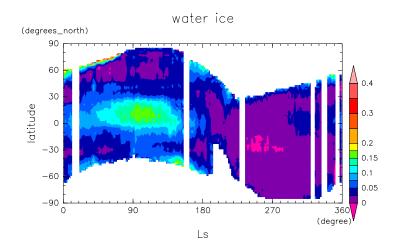


Figure 343: Optical depth of water ice observed by MGS-TES in MY25

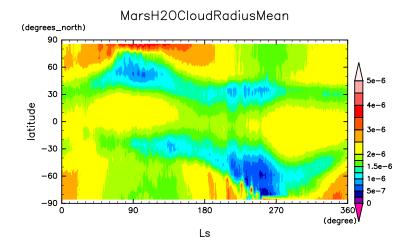


Figure 344: optical depth weighted mean H_2O cloud radius by DCPAM

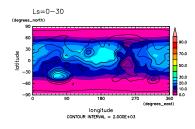


Figure 345: Prec. water at 02 LST and Ls=0°-30° by DCPAM

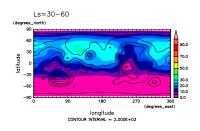


Figure 346: Prec. water at 02 LST and Ls= $30^\circ\text{-}60^\circ$ by DCPAM

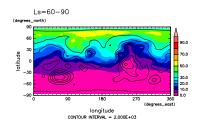


Figure 347: Prec. water at 02 LST and Ls= $60^\circ\text{-}90^\circ$ by DCPAM

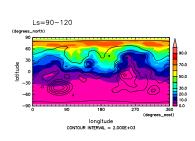


Figure 348: Prec. water at 02 LST and Ls=90°-120° by DCPAM

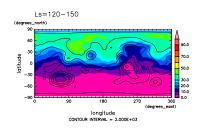


Figure 349: Prec. water at 02 LST and Ls= 120° - 150° by DCPAM

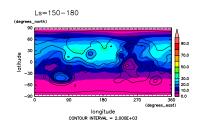


Figure 350: Prec. water at 02 LST and Ls=150°-180° by DCPAM

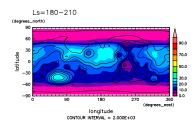


Figure 351: Prec. water at 02 LST and Ls= 180° - 210° by DCPAM

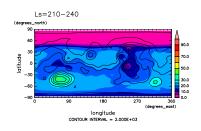


Figure 352: Prec. water at 02 LST and Ls= 210° - 240° by DCPAM

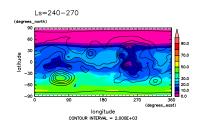


Figure 353: Prec. water at 02 LST and Ls=240°-270° by DCPAM

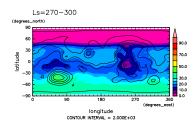


Figure 354: Prec. water at 02 LST and Ls=270°-300° by DCPAM

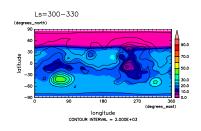


Figure 355: Prec. water at 02 LST and Ls= 300° - 330° by DCPAM

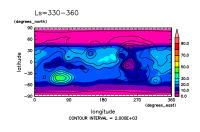


Figure 356: Prec. water at 02 LST and Ls=330°-360° by DCPAM

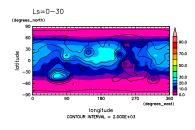


Figure 357: Prec. water at 14 LST and Ls=0°-30° by DCPAM

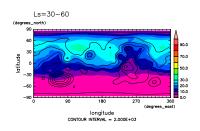


Figure 358: Prec. water at 14 LST and Ls=30°-60° by DCPAM

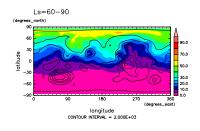


Figure 359: Prec. water at 14 LST and Ls= $60^\circ\text{-}90^\circ$ by DCPAM

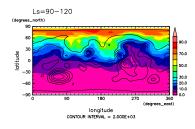


Figure 360: Prec. water at 14 LST and Ls=90°-120° by DCPAM

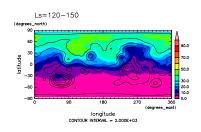


Figure 361: Prec. water at 14 LST and Ls= 120° - 150° by DCPAM

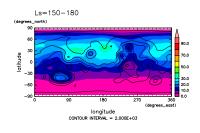


Figure 362: Prec. water at 14 LST and Ls=150°-180° by DCPAM

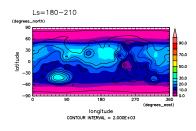


Figure 363: Prec. water at 14 LST and Ls= 180° - 210° by DCPAM

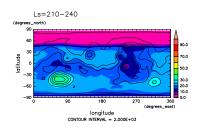


Figure 364: Prec. water at 14 LST and Ls= 210° - 240° by DCPAM

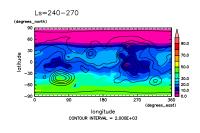


Figure 365: Prec. water at 14 LST and Ls=240°-270° by DCPAM

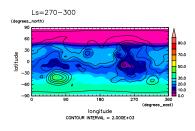


Figure 366: Prec. water at 14 LST and Ls=270°-300° by DCPAM

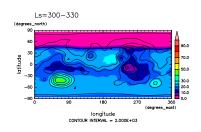
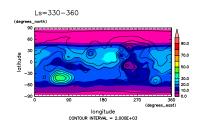
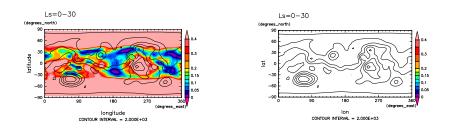
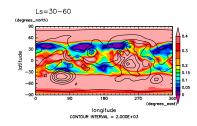
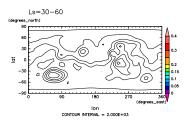


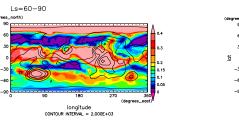
Figure 367: Prec. water at 14 LST and Ls=300°-330° by DCPAM


Figure 368: Prec. water at 14 LST and Ls=330°-360° by DCPAM

depth at 02 LST and Ls= $0^{\circ}-30^{\circ}$ by DCPAM

Figure 369: H₂O ice cloud optical Figure 372: H₂O ice cloud optical depth at 02 LST and Ls= $0^{\circ}-30^{\circ}$ by MGS



depth at 02 LST and Ls= $30^{\circ}-60^{\circ}$ by DCPAM

Figure 370: H₂O ice cloud optical Figure 373: H₂O ice cloud optical depth at 02 LST and Ls= $30^{\circ}-60^{\circ}$ by MGS

Ls=60-90

depth at 02 LST and Ls= $60^{\circ}-90^{\circ}$ by DCPAM

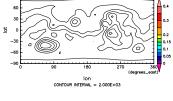


Figure 371: H₂O ice cloud optical Figure 374: H₂O ice cloud optical depth at 02 LST and Ls=60°-90° by MGS

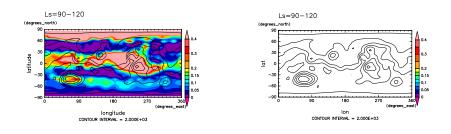
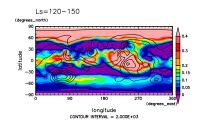



Figure 375: H_2O ice cloud optical depth at 02 LST and Ls= 90° - 120° by DCPAM

Figure 378: H_2O ice cloud optical depth at 02 LST and Ls= 90° - 120° by MGS

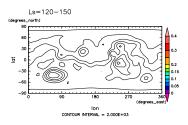
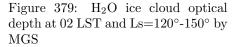



Figure 376: H_2O ice cloud optical depth at 02 LST and Ls= $120^{\circ}-150^{\circ}$ by DCPAM

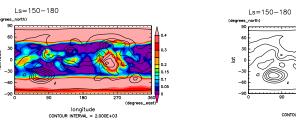
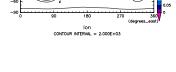
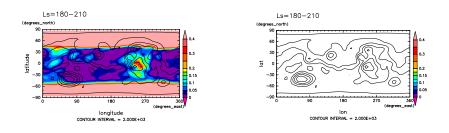
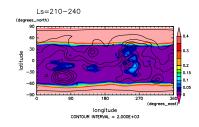
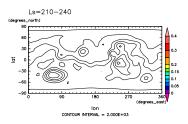




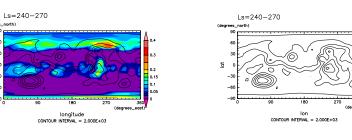
Figure 377: H₂O ice cloud optical Figure 380: H₂O ice cloud optical depth at 02 LST and Ls= 150° - 180° by DCPAM




depth at 02 LST and Ls=150°-180° by MGS

depth at 02 LST and Ls= $180^{\circ}-210^{\circ}$ by DCPAM

Figure 381: H₂O ice cloud optical Figure 384: H₂O ice cloud optical depth at 02 LST and Ls= $180^{\circ}-210^{\circ}$ by MGS



depth at 02 LST and Ls= $210^{\circ}-240^{\circ}$ by DCPAM

(dec

Figure 382: H₂O ice cloud optical Figure 385: H₂O ice cloud optical depth at 02 LST and Ls= $210^{\circ}-240^{\circ}$ by MGS

depth at 02 LST and Ls= 240° - 270° by DCPAM

Figure 383: H₂O ice cloud optical Figure 386: H₂O ice cloud optical depth at 02 LST and Ls=240°-270° by MGS

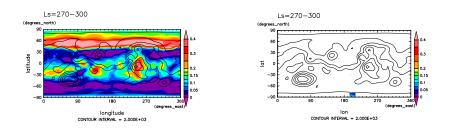
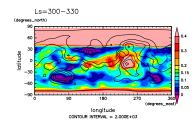
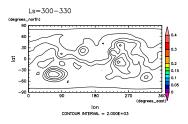




Figure 387: H_2O ice cloud optical depth at 02 LST and Ls= 270° - 300° by DCPAM

Figure 390: H_2O ice cloud optical depth at 02 LST and Ls= 270° - 300° by MGS

depth at 02 LST and Ls= 300° - 330° by DCPAM

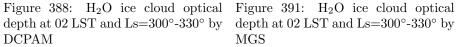


Figure 389: H₂O ice cloud optical Figure 392: H₂O ice cloud optical depth at 02 LST and Ls= 330° - 360° by DCPAM

depth at 02 LST and Ls=330°-360° by MGS

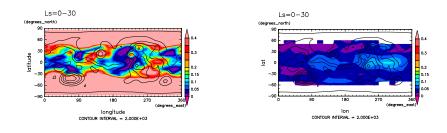
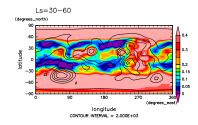
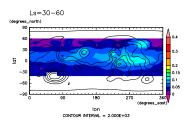




Figure 393: H₂O ice cloud optical Figure 396: H₂O ice cloud optical depth at 14 LST and Ls= $0^{\circ}-30^{\circ}$ by DCPAM

depth at 14 LST and Ls= $0^{\circ}-30^{\circ}$ by MGS

depth at 14 LST and Ls= $30^{\circ}-60^{\circ}$ by DCPAM

(der

Figure 394: H₂O ice cloud optical Figure 397: H₂O ice cloud optical depth at 14 LST and Ls= $30^{\circ}-60^{\circ}$ by MGS

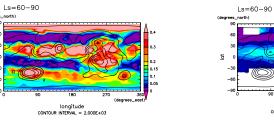
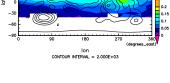



Figure 395: H₂O ice cloud optical Figure 398: H₂O ice cloud optical depth at 14 LST and Ls= $60^{\circ}-90^{\circ}$ by DCPAM

depth at 14 LST and Ls= $60^{\circ}-90^{\circ}$ by MGS

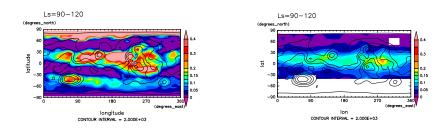


Figure 399: H_2O ice cloud optical depth at 14 LST and Ls= 90° - 120° by DCPAM

Ls=120-150 (dec longitude CONTOUR INTERVAL = 2.000E+03

Figure 402: H_2O ice cloud optical depth at 14 LST and Ls= 90° - 120° by MGS

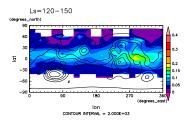
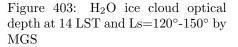
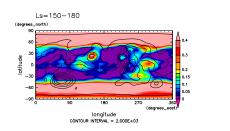




Figure 400: H_2O ice cloud optical depth at 14 LST and Ls= 120° - 150° by DCPAM

depth at 14 LST and Ls= 150° - 180° by DCPAM

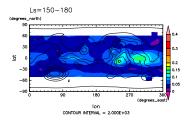
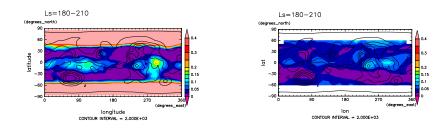
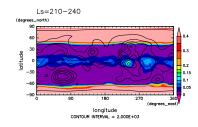




Figure 401: H₂O ice cloud optical Figure 404: H₂O ice cloud optical depth at 14 LST and Ls=150°-180° by MGS

depth at 14 LST and Ls= $180^{\circ}-210^{\circ}$ by DCPAM

Figure 405: H₂O ice cloud optical Figure 408: H₂O ice cloud optical depth at 14 LST and Ls= $180^{\circ}-210^{\circ}$ by MGS

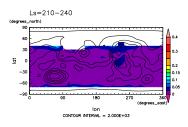
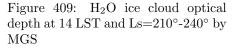



Figure 406: H_2O ice cloud optical depth at 14 LST and Ls= $210^{\circ}-240^{\circ}$ by DCPAM

Ls=240-270

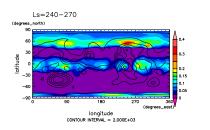
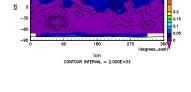



Figure 407: H₂O ice cloud optical Figure 410: H₂O ice cloud optical depth at 14 LST and Ls= 240° - 270° by DCPAM

depth at 14 LST and Ls=240°-270° by MGS

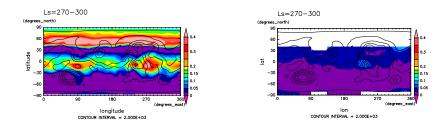
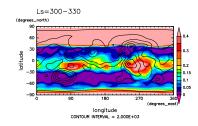



Figure 411: H_2O ice cloud optical depth at 14 LST and Ls= 270° - 300° by DCPAM

Figure 414: H_2O ice cloud optical depth at 14 LST and Ls= 270° - 300° by MGS

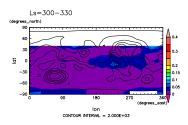
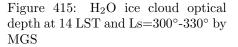



Figure 412: H_2O ice cloud optical depth at 14 LST and Ls= 300° - 330° by DCPAM

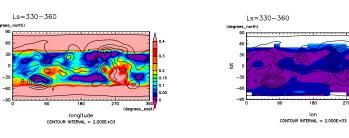


Figure 413: H₂O ice cloud optical Figure 416: H₂O ice cloud optical depth at 14 LST and Ls= 330° - 360° by DCPAM

depth at 14 LST and Ls=330°-360° by MGS

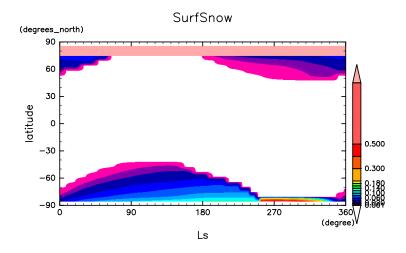
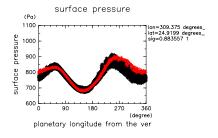
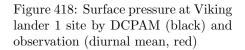
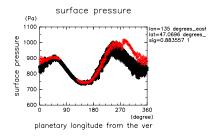
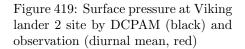






Figure 417: Snow on the ground by DCPAM

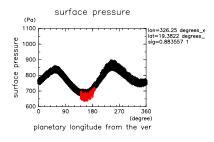


Figure 420: Surface pressure at Mars Pathfinder site by DCPAM (black) and observation (red)