dcpam5-plane 支配方程式系とその離散化

地球流体電脳倶楽部

平成26年7月3日

目 次

第1章	はじめに	1
1.1	この文書について............................	1
1.2	dcpam5-plane の概要	1
第2章	座標系・変換公式	3
2.1	はじめに	3
2.2	座標系	3
2.3		3
2.4	鉛直レベル	4
2.5	水平スペクトル	5
	2.5.1 水平スペクトルの基底の導入	5
	2.5.2 波数切断	6
	2.5.3 離散化したスペクトルの基底の直交性	6
	2.5.4 格子点値とスペクトルの係数との変換法	6
	2.5.5 内挿公式	7
2.6	参考文献	7
第3章	モデル全体での時間積分の概要	8
第3章 第4章	モデル全体での時間積分の概要	8 0
第3章 第4章 4.1	モデル全体での時間積分の概要 力学過程 1 はじめに 1	8 0 0
第3章 第4章 4.1 4.2	 モデル全体での時間積分の概要 力学過程 はじめに 数理表現 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8 0 .0
第3章 第4章 4.1 4.2	モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式	8 0 .0 .0
第3章 第4章 4.1 4.2	モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 1 4.2.2 静水圧の式 1	8 0 .0 .0 1
第3章 第4章 4.1 4.2	モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 1 4.2.2 静水圧の式 1 4.2.3 運動方程式 1	8 0 .0 .0 .1 .1
第3章 第4章 4.1 4.2	モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 1 4.2.2 静水圧の式 1 4.2.3 運動方程式 1 4.2.4 熱力学の式 1	8 0 .0 .0 .1 .1
第3章 第4章 4.1 4.2	モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 1 4.2.2 静水圧の式 1 4.2.3 運動方程式 1 4.2.4 熱力学の式 1 4.2.5 水蒸気の式 1	8 0 .0 .0 .1 .1 .1
第3章 第4章 4.1 4.2	モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 1 4.2.2 静水圧の式 1 4.2.3 運動方程式 1 4.2.4 熱力学の式 1 4.2.5 水蒸気の式 1 4.2.6 境界条件 1	8 0 .0 .0 .1 .1 .1 .1 .1 .4
第3章 第4章 4.1 4.2	モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 1 4.2.2 静水圧の式 1 4.2.3 運動方程式 1 4.2.4 熱力学の式 1 4.2.5 水蒸気の式 1 4.2.6 境界条件 1 4.2.7 水平拡散とスポンジ層 1	8 0 .0 .0 .1 .1 .1 .1 .4 .4
第3章 第4章 4.1 4.2	モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 1 4.2.2 静水圧の式 1 4.2.3 運動方程式 1 4.2.4 熱力学の式 1 4.2.5 水蒸気の式 1 4.2.6 境界条件 1 4.2.7 水平拡散係数の値を決めるための判断材料 1	8 0 0 0 0 1 1 1 4 4 5
第3章 第4章 4.1 4.2 4.3	モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 1 4.2.2 静水圧の式 1 4.2.3 運動方程式 1 4.2.4 熱力学の式 1 4.2.5 水蒸気の式 1 4.2.6 境界条件 1 4.2.7 水平拡散とスポンジ層 1 4.2.8 水平拡散係数の値を決めるための判断材料 1 離散表現: 鉛直離散化 1	8 0 0 0 1 1 1 4 5 5
第3章 第4章 4.1 4.2 4.3	モデル全体での時間積分の概要 1 力学過程 1 はじめに 1 数理表現 1 4.2.1 連続の式 1 4.2.2 静水圧の式 1 4.2.3 運動方程式 1 4.2.4 熱力学の式 1 4.2.5 水蒸気の式 1 4.2.6 境界条件 1 4.2.7 水平拡散とスポンジ層 1 4.2.8 水平拡散係数の値を決めるための判断材料 1 離散表現: 鉛直離散化 1 4.3.1 連続の式, 鉛直速度 1	8 0 0 0 0 1 1 1 4 4 5 6

basic `equations.tex

	4.3.3 運動方程式	17
	4.3.4 熱力学の式	17
	4.3.5 水蒸気の式	18
	4.3.6 鉛直差分に関する補足	19
	4.3.7 鉛直レベルの決め方	20
4.4	離散表現:水平離散化	20
	4.4.1 連続の式	21
	4.4.2 運動方程式	21
	4.4.3 熱力学の式	21
	4.4.4 水蒸気の式	22
4.5	離散表現:時間離散化	22
	4.5.1 力学過程の方程式系の時間差分式	23
4.6	参考文献	27
第5章	物理過程で用いる予備変数	29
5.1	はじめに	29
5.2	離散表現	29
	5.2.1 鉛直層境界における温度	29
	5.2.2 鉛直層中心と境界における高度	30
生っキ		~ 1
- 男り草		31
弗 6 草 6.1		31 31
弗 6 草 6.1 6.2	加別 はじめに 数理表現: 共通部分	31 31 31
赤 6 享 6.1 6.2	加別 はじめに 数理表現: 共通部分 6.2.1 加熱率	31 31 31 31
步 6 早 6.1 6.2	加知 はじめに 数理表現: 共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式	31 31 31 31 32
弗 6 早 6.1 6.2	加納 はじめに 数理表現: 共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式	31 31 31 31 32 33
赤 6 早 6.1 6.2 6.3	加納 はじめに 数理表現:共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 離散表現:共通部分	31 31 31 31 32 33 34
寿 6 早 6.1 6.2 6.3	加知 はじめに 数理表現: 共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 離散表現: 共通部分 6.3.1	 31 31 31 31 32 33 34 34
赤 6 早 6.1 6.2 6.3	加納 はじめに 数理表現:共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.1 加熱率 6.3.2 散乱を無視した場合の放射伝達方程式	 31 31 31 31 32 33 34 34 34
寿 6 早 6.1 6.2 6.3	IXN はじめに 数理表現: 共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.1 加熱率 6.3.2 散乱を無視した場合の放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式	 31 31 31 31 31 32 33 34 34 34 36
寿 6 早 6.1 6.2 6.3 6.4	IXM はじめに 数理表現: 共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.1 加熱率 6.3.2 散乱を無視した場合の放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 5.3.4 数理表現: AGCM5 放射モデル	31 31 31 31 32 33 34 34 34 34 36 36
步 6 .1 6.2 6.3 6.4	加秋利 はじめに 数理表現: 共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.1 加熱率 6.3.2 散乱を無視した場合の放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.4.1 長波放射	31 31 31 32 33 34 34 34 34 36 36 37
寿 6 早 6.1 6.2 6.3 6.4	加秋利 はじめに 数理表現: 共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.1 加熱率 6.3.2 散乱を無視した場合の放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.4.1 長波放射 6.4.2 短波放射	 31 31 31 31 32 33 34 34 34 34 36 36 37 38
寿 6 早 6.1 6.2 6.3 6.4 6.5	加X射 はじめに 数理表現: 共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.1 加熱率 6.3.2 散乱を無視した場合の放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.4.1 長波放射 6.4.2 短波放射 離散表現: AGCM5 放射モデル 離散表現: AGCM5 放射モデル	31 31 31 32 33 34 34 34 34 36 36 36 37 38 39
寿 6 早 6.1 6.2 6.3 6.4 6.5	IXAI はじめに 数理表現: 共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.1 加熱率 6.3.2 散乱を無視した場合の放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.4.1 長波放射 6.4.1 長波放射 6.4.2 短波放射 6.5.1 長波放射	31 31 31 32 33 34 34 34 34 36 36 36 37 38 39 39
寿 6 早 6.1 6.2 6.3 6.4 6.5	加X射 はじめに 数理表現: 共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.1 加熱率 6.3.2 散乱を無視した場合の放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.4.1 長波放射 6.4.2 短波放射 6.4.1 長波放射 6.5.1 長波放射 6.5.2 短波放射	31 31 31 31 32 33 34 34 34 34 34 36 36 36 37 38 39 39 40
寿 6 早 6.1 6.2 6.3 6.4 6.5 6.6	加X射 はじめに 数理表現:共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.1 加熱率 6.3.2 散乱を無視した場合の放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.4.1 長波放射 6.4.1 長波放射 6.5.1 長波放射 6.5.1 長波放射 6.5.2 短波放射 6.5.4 5.5 5.5 短波放射	31 31 31 31 32 33 34 34 34 34 34 34 36 37 38 39 40 40
寿 6 早 6.1 6.2 6.3 6.3 6.4 6.5 6.5 6.6 6.7	加熱刺 はじめに 数理表現:共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.1 加熱率 6.3.2 散乱を無視した場合の放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.4.1 長波放射 6.4.1 長波放射 6.4.1 長波放射 6.5.1 長波放射 6.5.1 長波放射 6.5.2 短波放射 6.5.2 短波放射 大気上端での恒星の放射フラックス 放射計算で用いるパラメータ	31 31 31 31 32 33 34 34 34 34 36 36 37 38 39 40 40 48
寿 6 早 6.1 6.2 6.3 6.3 6.4 6.5 6.5 6.6 6.7 6.8	加秋利 はじめに 数理表現:共通部分 6.2.1 加熱率 6.2.2 散乱を無視した場合の放射伝達方程式 6.2.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.1 加熱率 6.3.2 散乱を無視した場合の放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.3.3 射出のない場合の散乱を考慮した放射伝達方程式 6.4.1 長波放射 6.4.1 長波放射 6.5.1 長波放射 6.5.2 短波放射 た気上端での恒星の放射フラックス 放射計算で用いるパラメータ 参考文献	31 31 31 32 33 34 34 34 34 34 36 37 38 39 40 40 48 49

第7章	積雲対流	51
7.1	はじめに	51
7.2	湿潤対流調節	51
	7.2.1 離散表現	51
7.3	Relaxed Arakawa-Schubert スキーム	54
7.4	参考文献	54
第8章	非対流性凝結 (大規模凝結)	55
8.1	離散表現	55
8.2	参考文献	56
第9章	乱流過程	57
9.1	数理表現	57
0.11	9.1.1 鉛直拡散係数	59
	9.1.2 バルク係数	60
	913 乱流過程で用いられるパラメータの値	62
9.2	離散表現	63
	9.2.1 鉛直拡散係数の離散表現	65
	9.2.2 バルク係数の離散表現	66
	9.2.3 運動量拡散の差分方程式の整理	67
	9.2.4 熱拡散の差分方程式の整理	68
	9.2.5 水蒸気 (物質) 拡散の差分方程式の整理	71
9.3	参考文献	73
第10章	:惑星表面・地下の熱収支	74
10.1	数理表現	74
	10.1.1 惑星表面 1 層モデル	74
	10.1.2 土壌熱拡散モデル	75
	10.1.3 海氷 1 層熱収支モデル	75
10.2	離散表現	75
	10.2.1 惑星表面 1 層モデル	76
	10.2.2 地表面における熱収支と地下における熱伝導方程式	77
	10.2.3 海氷面上の熱収支	80
	10.2.4 融雪による熱収支の修正	81
第11章	: バケツモデル 8	37
11.1	数理表現	87
11.2	離散表現	87
11.3	参考文献	87

第	12章	熱収支を統合した連立方程式の構成 8		
	12.1	離散表現	88	
		12.1.1 惑星表面に 1 層モデルを用いる場合	88	
		12.1.2 土壌熱拡散モデルを用いる場合	90	
		12.1.3 海氷熱収支モデルを用いる場合	91	
付	録 A A.1	惑星大気の物理定数 地球大気の物理定数	92 92	
付	録B	使用上の注意とライセンス規定	93	

第1章 はじめに

1.1 この文書について

この文書は,地球流体電脳倶楽部で開発中の大気大循環モデル,dcpam,のの平面2 重境界領域版である dcpam5-plane の支配方程式系およびその離散化手法を解説 したものである.

現状では,本文書の内容とソースコードとで一致しない箇所もあることに注意されたい.

1.2 dcpam5-plane の概要

ここでは,現在版 (2011/10/07) の dcpam5-plane の概要を示す.下に示す各過程 は実装してあるが,すべてを使わなくても計算を行うことはできる.例えば,移流 計算のみの力学コアテスト計算や,陸のない水惑星実験を行うことも可能である.

• 移流

- プリミティブ方程式系

- 放射
 - AGCM5 デフォルト (Numaguti, 1992)
 - 地球用放射モデル (to be described)
 - 火星用放射モデル (Takahashi et al., 2003, 2006 の改良・簡単化版)
- サブグリッドスケール混合・凝結
 - 乱流混合

- * Mellor and Yamada Level 2 (Mellor and Yamada, 1974, 1982)
- * バルク法による地表面フラックス (Louis et al., 1982)
- 乾燥対流調節 (e.g., Manabe et al., 1965)
- 積雲対流
 - * 湿潤対流調節 (e.g., Manabe et al., 1965)
 - * Relaxed Arakawa-Schubert (Moorthi and Suarez, 1992)
- 大規模凝結 (Manabe et al., 1965)
- 惑星表面
 - _ 「陸」
 - * 陸面における熱収支
 - ・地中熱伝導方程式を数値的に説くことで土壌温度を計算
 - * バケツモデル (Manabe, 1969) によって土壌水分を計算
 - * 積雪の扱い
 - ・最下層大気温度が 273.15 K 以下の場合に雨は雪となる
 - 海氷上には雪は積もらない
 - ・土壌1層目の熱収支を修正して融雪
 - ・融けた雪は土壌水分に加算
 - · 蒸発効率 1.0
 - _ 「海」
 - * 下の 2 つから選択
 - ・ 海表面温度と海表面密度を固定
 - ・ 板海 (slab ocean) によって海表面温度を計算

第2章 座標系·変換公式

2.1 はじめに

ここでは, 座標系および水平格子点, 鉛直レベルの取り方を記す. さらに, 力学過程 の時間積分において使用する水平スペクトルを定義し, 格子点値とスペクトルの係 数との変換則を記す.

2.2 座標系

座標系は、水平方向には直交座標系 x, y を、鉛直方向には $\sigma \equiv \frac{p}{p_s}$ をとる. ここで p は気圧、 p_s は地表面気圧である.

座標の取り方に関する詳細は別紙『支配方程式系の導出に関する参考資料¹』の『座 標系の取り方』を参照せよ.

2.3 水平格子点

dcpam5-plane は, 水平移流の計算にスペクトル変換法を用いているため, 水平方向の格子点の位置は, *x*, *y* 方向に共に等間隔格子 (それぞれ *I*, *J* 個) である².

x 方向の格子点

¹http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_current/doc/derivation/htm/derivation.htm ²以下, *I*, *J* は偶数とする.

x 方向の格子点の位置を

$$x_i = x_{min} + (x_{max} - x_{min})\frac{(i-1)}{I} \quad (i = 0, 1, 2, \cdots, I-1)$$
(2.1)

ととる.

y 方向の格子点

y 方向の格子点の位置を

$$y_i = y_{min} + (y_{max} - y_{min}) \frac{(j-1)}{J} \quad (j = 0, 1, 2, \cdots, J-1)$$
 (2.2)

ととる.

2.4 鉛直レベル

Lorentz グリッドを用いる. この格子配置では,水平風速,温度,比湿,物質の混合比³ は鉛直層の中心に配置され,鉛直速度は鉛直層の境界に配置される. また, dcpam5 において鉛直層を配置する際に位置を決めるのは鉛直層の境界であり,中 心位置ではない. 鉛直層の中心位置はモデルの中で適当に計算される.

鉛直層には、下の層から上へと層の番号をつける. 層の番号には、層の境界においては半整数、層の中心においては整数を用いる. 鉛直総数が K のとき、半整数レベルの層番号は、下端において $\frac{1}{2}$ であり、上端において $K + \frac{1}{2}$ となる. 整数レベルの層番号は、最下層において 1 であり、最上層において K となる.

層の中心の位置 (整数レベルの σ の値 σ_k (k = 1, 2, ..., K)) は, Arakawa and Suarez (1983) の鉛直差分の方法に基づいて決めることにする. 層の中心位置の σ の値は 次の式から求める.

$$\sigma_k = \left\{ \frac{1}{1+\kappa} \left(\frac{\sigma_{k-1/2}^{\kappa+1} - \sigma_{k+1/2}^{\kappa+1}}{\sigma_{k-1/2} - \sigma_{k+1/2}} \right) \right\}^{1/\kappa}.$$
(2.3)

ここで $\kappa = \frac{R}{C_p}$, R は乾燥空気の気体定数, C_p は乾燥空気の定圧比熱である⁴. また, レベル加重 $\Delta \sigma$ は以下のように定義される.

$$\Delta \sigma_k \equiv \sigma_{k-1/2} - \sigma_{k+1/2}, \qquad (1 < k < K)$$

$$\Delta \sigma_{1/2} \equiv \sigma_{1/2} - \sigma_1 = 1 - \sigma_1, \qquad (2.4)$$

$$\Delta \sigma_{K+1/2} \equiv \sigma_K - \sigma_{K+1/2} = \sigma_K.$$

⁴いずれも定数としている.

³本当は混合比ではないらしいのだが.

2.5 水平スペクトル

ここでは,力学過程の時間積分での計算において用いるスペクトルを導入し,格子 点での値とスペクトルの係数とのやり取りの公式を示す.

2.5.1 水平スペクトルの基底の導入

格子点上の点で定義された物理量は,格子点上でのみ値を持つ (以下このことを, 「離散化した」と呼ぶ) 球面調和函数の和の形で表現される.また,各格子点におけ る物理量の水平微分を評価するために, (*x*, *y*) 面で定義された (以下,「連続系の」 と呼ぶ) 2 重フーリエ級数で内挿して得られる関数を用いる.ここではその 2 重 フーリエ級数を導入する.

(x,y) 面において, 関数 f(x,y) の 2 重フーリエ級数による展開は次のように定義 される.

$$f(x,y) = \sum_{p=-N_p}^{N_p} \sum_{p=-N_q}^{N_q} \tilde{f}^{p,q} \exp(ipX) \exp(iqY)$$
(2.5)

ただし, X, Y は

$$X = 2\pi \frac{x}{L_x}, \quad Y = 2\pi \frac{y}{L_y}.$$

 L_x, L_y はそれぞれ x, y 方向の領域の大きさである.

2.5.2 波数切断

波数切断は 2 次の非線形項によるエイリアジングを除くために $I \ge 3N_p + 1$, かつ $J \ge 3N_q + 1$ の条件を満たすよう選ぶことが多い.よく用いられる値の例として は, I = J = 128, $N_p = N_q = 42$, I = J = 256, $N_p = N_q = 85$, などである.

2.5.3 離散化したスペクトルの基底の直交性

離散化した2重フーリエ級数は次の直交条件を満たす

$$\sum_{i=0}^{I-1} \exp(ipX_i) \exp(-ip'X_i) = I\delta_{pp'}.$$
(2.6)

2.5.4 格子点値とスペクトルの係数との変換法

物理量 A の格子点 (x_i, y_j) (ただし $i = 0, 1, 2, \dots, I - 1$. $j = 0, 1, 2, \dots, J - 1$) での値 $A_{ij} = A(x_i, y_j)$ とスペクトル空間での係数 $\tilde{A}^{p,q}$ とは次の変換則に従う⁵.

$$A_{ij} \equiv \sum_{p=-N_p}^{N_p} \sum_{q=N_q}^{N_q} \tilde{A}^{p,q} \exp(ipX_j) \exp(iqY_j), \qquad (2.7)$$

$$\tilde{A}^{p,q} = \frac{1}{IJ} \sum_{i=0}^{I-1} \sum_{j=1}^{J-1} A_{ij} \exp(-ipX_j) \exp(-iqY_j).$$
(2.8)

ただし, X_i, Y_j は

$$X = 2\pi \frac{x_i}{x_{max} - x_{min}}, \quad Y = 2\pi \frac{y_j}{y_{max} - y_{min}}.$$

ここで, A が実数であることを用いると, $\tilde{A}^{p,q} = (\tilde{A}^{-p,-q})^*$ である.

⁵正変換, 逆変換時の係数は整合的に与えてさえいれば問題がない.

2.5.5 内挿公式

(x,y)空間で定義される物理量 A(x,y) を格子点値 A_{ij} をもとに内挿する場合に は,変換公式を用いて A_{ij} から $\tilde{A}^{p,q}$ を求めた上で,

$$A(x,y) \equiv \sum_{p=-N_p/2}^{N_p/2} \sum_{q=N_q/2}^{N_q/2} \tilde{A}^{p,q} \exp(-ipX_j) \exp(-iqY_j)$$
(2.9)

として得る.

2.6 参考文献

Arakawa, A., Suarez, M. J., 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111, 34–35.

第3章 モデル全体での時間積分の 概要

本モデルでは,移流過程 (力学過程),放射過程,サブグリッドスケールの乱流混合 過程を考慮して,大気中の変数と惑星表面,土壌中の変数を計算する.本節では,そ れら様々な過程を用いた時間積分全体の概要を示す.

大気中の変数を ϕ_a ,惑星表面および土壌中の変数を ϕ_s とすると,モデルの支配方 程式系は記号的に下のように書くことができる.

$$\frac{\partial \phi_a}{\partial t} = D(\phi_a) + P_{a,1}(\phi_a, \phi_s) + P_{a,2}(\phi_a)$$
(3.1)

$$\frac{\partial \phi_s}{\partial t} = P_{s,1}(\phi_a, \phi_s) + P_{s,2}(\phi_a) \tag{3.2}$$

ここで, D は移流過程 (力学過程), による時間変化率である. また, $P_{a,1}$, $P_{s,1}$ はそ れぞれ物理過程 1 (放射過程, 鉛直乱流過程) による大気中の変数と惑星表面およ び土壌中の変数の時間変化率であり, $P_{a,2}$, $P_{s,2}$ はそれぞれ物理過程 2 (積雲対流過 程, 非対流性凝結過程, 乾燥対流調節) による大気中の変数と惑星表面および土壌 中の変数の時間変化率である. $P_{a,1}$, $P_{s,2}$, $P_{s,2}$ は下のように表現できる.

$$P_{a,1}(\phi_a, \phi_s) = P_{a,1,rad}(\phi_a, \phi_s) + P_{a,1,vdiff}(\phi_a, \phi_s)$$
(3.3)

$$P_{s,1}(\phi_a, \phi_s) = P_{s,1,rad}(\phi_a, \phi_s) + P_{s,1,vdiff}(\phi_a, \phi_s)$$
(3.4)

$$P_{a,2}(\phi_a) = P_{a,2,cum}(\phi_a) + P_{a,2,lsc}(\phi_a) + P_{a,2,dca}(\phi_a)$$
(3.5)

$$P_{s,2}(\phi_a) = P_{s,2,cum}(\phi_a) + P_{s,2,lsc}(\phi_a)$$
(3.6)

ここで、 $P_{a/s,1,rad}$, $P_{a/s,1,vdiff}$, $P_{a/s,2,cum}$, $P_{a/s,2,lsc}$, $P_{a/s,2,dca}$ は, それぞれ放射過程, 鉛直乱流過程, 積雲対流過程, 非対流性凝結過程, 乾燥対流調節過程による大気中 の変数または惑星表面および土壌中の変数の時間変化率である.物理過程を 1, 2 のふたつに分けているのは, 物理過程 2 が「調節型」の物理過程であるためであ り, 下に示すように, 二段階に分けて積分する.

これらの方程式は, まず移流過程 (力学過程) と物理過程 1 に関して時間積分し, 続いて物理過程 2 について時間積分する. まず, 移流過程 (力学過程) と物理過程 1に関する時間積分は下のように表される.

$$\phi_a^* = \phi_a^{t-\Delta t} + 2\Delta t D(\phi_a^*, \phi_a^t, \phi_a^{t-\Delta t}) + 2\Delta t P_{a,1}(\phi_a^+, \phi_a^{t-\Delta t}, \phi_s^+, \phi_s^{t-\Delta t})$$
(3.7)

$$\phi_s^* = \phi_s^{t-\Delta t} + n\Delta t P_{s,1}(\phi_a^+, \phi_a^{t-\Delta t}, \phi_s^+, \phi_s^{t-\Delta t})$$
(3.8)

ここで, *n* は, ϕ_s が惑星表面温度, 土壌温度の場合には 1 であり, 土壌水分, 積雪量 の場合には 2 である¹. また, ここで用いる $P_{a/s,1}(\phi^+, \phi^{t-\Delta t}, \phi^+_s, \phi^{t-\Delta t}_s)$ は, 現象の 時間スケールが短いため, 下のような連立方程式を陰解法を用いて解くことで評価 する.

$$\phi_{a}^{+} = \phi_{a}^{t-\Delta t} + 2\Delta t P_{a,1,rad}(\phi_{a}^{+}, \phi_{a}^{t-\Delta t}, \phi_{s}^{+}, \phi_{s}^{t-\Delta t}) + 2\Delta t P_{a,1,vdiff}(\phi_{a}^{+}, \phi_{a}^{t-\Delta t}, \phi_{s}^{+}, \phi_{s}^{t-\Delta t})$$
(3.9)

$$\phi_s^+ = \phi_s^{t-\Delta t} + 2\Delta t P_{s,1,rad}(\phi_a^+, \phi_a^{t-\Delta t}, \phi_a^+, \phi_a^{t-\Delta t}) + 2\Delta t P_{s,1,vdiff}(\phi_a^+, \phi_a^{t-\Delta t}, \phi_a^+, \phi_a^{t-\Delta t})$$
(3.10)

続いて, φ* は「調節型」の物理過程を順次適応することで, 下のように更新する.

$$\phi_a^{**} = \phi_a^* + 2\Delta t P_{a,2,cum}(\phi_a^{**}, \phi_a^*) \tag{3.11}$$

$$\phi_a^{***} = \phi_a^{**} + 2\Delta t P_{a,2,lsc}(\phi_a^{***}, \phi_a^{**}) \tag{3.12}$$

$$\phi_a^{t+\Delta t} = \phi_a^{***} + 2\Delta t P_{a,2,dca}(\phi_a^{t+\Delta t}, \phi_a^{***})$$
(3.13)

$$\phi_s^{**} = \phi_s^* + 2\Delta t P_{a,2,cum}(\phi_a^{**}, \phi_a^*) \tag{3.14}$$

$$\phi_s^{t+\Delta t} = \phi_s^{**} + 2\Delta t P_{a,2,lsc}(\phi_a^{t+\Delta t}, \phi_a^{**})$$
(3.15)

なお, 惑星表面温度と土壌温度については物理過程 2 で値が変化しないため, 上記 の積分は行わずに $\phi^t = \phi^*$ となる.

移流過程 (力学過程), 放射過程, 積雲対流, 非対流性凝結, 鉛直乱流混合について は, それぞれ第4, 6, 7, 8, 9 章で述べる. 惑星表面および土壌中の過程については 第10, 11 章で述べる. また, (3.9), (3.10) で示した, 物理過程1 による時間変化率 を求める際の陰解法については第12章で述べる.

¹このように時間積分法が異なるのは,惑星表面温度 (と土壌温度) の積分法として,AGCM5 の 方法を踏襲しているためである.いずれ再考する必要があるだろう. (YOT, 2011/09/06)

第4章 力学過程

4.1 はじめに

この章では力学過程の支配方程式を記し、その支配方程式の離散化を行う.

ここで述べる力学過程とは, 流体の支配方程式における外力項を除いた部分を指す. 外力項である放射や鉛直乱流拡散や雲などに関する過程については別紙を参照の こと.

離散化については, 空間に関する離散化である鉛直離散化ならびに時間に関する離 散化を行う.

4.2 数理表現

ここでは力学過程の支配方程式系の数理表現を示す.この方程式系の詳細に関しては, Haltiner and Williams (1980) もしくは別紙『支配方程式系の導出に関する 参考資料¹』の『力学過程の支配方程式系の導出』を参照せよ.

4.2.1 連続の式

$$\frac{\partial \pi}{\partial t} + \boldsymbol{v}_H \cdot \nabla_{\sigma} \pi = -D - \frac{\partial \dot{\sigma}}{\partial \sigma}.$$
(4.1)

 $^{^{1}} http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_current/doc/derivation/htm/derivation.htm/derivati$

4.2.2 静水圧の式

$$\frac{\partial \Phi}{\partial \sigma} = -\frac{RT_v}{\sigma}.\tag{4.2}$$

4.2.3 運動方程式

$$\frac{\partial \zeta}{\partial t} = \left(\frac{\partial V_A}{\partial x} - \frac{\partial U_A}{\partial y}\right),\tag{4.3}$$

$$\frac{\partial D}{\partial t} = \left(\frac{\partial U_A}{\partial x} + \frac{\partial V_A}{\partial y}\right) - \nabla^2_{\sigma}(\Phi + R\overline{T}\pi + KE).$$
(4.4)

4.2.4 熱力学の式

$$\frac{\partial T}{\partial t} = -\left(\frac{\partial u T'}{\partial x} + \frac{\partial v T'}{\partial y}\right) + T'D
- \dot{\sigma}\frac{\partial T}{\partial \sigma} + \kappa T_v \left(\frac{\partial \pi}{\partial t} + \boldsymbol{v}_H \cdot \nabla_{\sigma}\pi + \frac{\dot{\sigma}}{\sigma}\right) + \frac{Q^*}{C_p}.$$
(4.5)

4.2.5 水蒸気の式

$$\frac{\partial q}{\partial t} = -\left(\frac{\partial uq}{\partial x} + \frac{\partial vq}{\partial y}\right) + qD - \dot{\sigma}\frac{\partial q}{\partial \sigma} + S_q.$$
(4.6)

ここで、独立変数は以下の通りである.

$$x: 水平座標, [m]$$
 (4.7)

$$y: 水平座標, [m]$$
 (4.8)

$$\sigma \equiv p/p_s,\tag{4.9}$$

$$t:$$
 時間 [s]. (4.10)

ここで, p は気圧, p_s は地表面気圧である.

モデルで時間発展を計算することとなる予報変数は以下の通りである.

$$\pi (x, y) \equiv \ln p_s, \tag{4.11}$$

$$T(x, y, \sigma): \quad \bar{\mathfrak{A}} \mathbb{E}[\mathbf{K}], \tag{4.12}$$

$$q(x, y, \sigma): \quad \text{Li} \mathbb{R}[\text{kg kg}^{-1}], \qquad (4.13)$$

$$\zeta(x, y, \sigma) \equiv \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}: \quad \Re \mathfrak{E} [s^{-1}], \qquad (4.14)$$

$$D(x, y, \sigma) \equiv \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} : \quad \Re \mathbb{E}[\mathbf{s}^{-1}], \qquad (4.15)$$

$$u(x, y, \sigma)$$
: 東西風速 [m s⁻¹], (4.16)

$$v(x, y, \sigma)$$
: 南北風速 [m s⁻¹]. (4.17)

である. 流線関数 ψ と速度ポテンシャル χ を導入すると, U, V, ζ, D はそれぞれ以 下のように表わされる.

$$u = \frac{\partial \chi}{\partial x} - \frac{\partial \psi}{\partial y},\tag{4.18}$$

$$u = \frac{\partial w}{\partial x} - \frac{\partial w}{\partial y}, \qquad (4.18)$$
$$v = \frac{\partial \psi}{\partial x} + \frac{\partial \chi}{\partial y}, \qquad (4.19)$$

$$\zeta = \nabla^2 \psi, \tag{4.20}$$

$$D = \nabla^2 \chi. \tag{4.21}$$

(4.35)

(4.38)

各時間ステップで診断的に求められる変数は以下の通りである.

$$\Phi \equiv gz: ジオポテンシャル高度 [m2 s-2], \qquad (4.22)$$

$$\dot{\sigma} \equiv \frac{d\sigma}{dt} \equiv \frac{g\sigma}{R^d T_v} \left\{ \left(\frac{\partial z}{\partial t} \right)_\sigma + u \left(\frac{\partial z}{\partial x} \right)_\sigma + v \left(\frac{\partial z}{\partial y} \right)_\sigma - w \right\}, \quad (4.23)$$

$$\overline{T}(\sigma): \quad \overline{E}_{\alpha} = \mathbb{E}_{[K]}, \tag{4.24}$$

$$T'(x, y, \sigma) \equiv T - \overline{T}, \tag{4.25}$$

$$T_{v}(x,y,\sigma) \equiv T\left\{1 + \left(\epsilon_{v}^{-1} - 1\right)q\right\},\tag{4.26}$$

$$T'_{v}(x,y,\sigma) \equiv T_{v} - \overline{T}, \tag{4.27}$$

$$U_A(x, y, \sigma) \equiv (\zeta + f)v - \dot{\sigma}\frac{\partial u}{\partial \sigma} - RT'_v\frac{\partial \pi}{\partial x} + \mathcal{F}_x, \qquad (4.28)$$

$$V_A(x, y, \sigma) \equiv -(\zeta + f)u - \dot{\sigma}\frac{\partial v}{\partial \sigma} - RT'_v\frac{\partial \pi}{\partial y} + \mathcal{F}_y, \qquad (4.29)$$

$$\boldsymbol{v}_H \cdot \nabla_\sigma \pi \equiv u \frac{\partial \pi}{\partial x} + v \frac{\partial \pi}{\partial y} \tag{4.30}$$

$$\nabla_{\sigma}^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2},\tag{4.31}$$

$$KE(x, y, \sigma) \equiv \frac{u^2 + v^2}{2}$$

$$\mathcal{D}(\zeta): \quad 渦度の水平拡散とスポンジ層における散逸,$$

$$(4.32)$$

$$\mathcal{D}(D)$$
: 発散の水平拡散とスポンジ層における散逸, (4.34)

$$\mathcal{D}(T)$$
: 熱の水平拡散,

$$\mathcal{D}(q)$$
: 水蒸気の水平拡散, (4.36)

$$\mathcal{F}_{x}(x,y,\sigma)$$
: 小規模運動過程 (経度方向), (4.37)

$$\mathcal{F}_{y}(x,y,\sigma)$$
: 小規模運動過程 (緯度方向),

$$Q(x,y,\sigma):$$
 放射,凝結,小規模運動過程等による加熱・温度変化, (4.39)

$$S_q(x,y,\sigma)$$
: 凝結,小規模運動過程等による水蒸気ソース, (4.40)

$$\mathcal{D}'(\boldsymbol{v})$$
: 摩擦熱. (4.41)

各水平拡散 (4.33)~(4.36) に関しては 4.2.7 節で説明される. 定数は以下の通りである.

$$R:$$
 乾燥大気の気体定数 [J kg⁻¹ K⁻¹], (4.42)

$$C_p$$
: 乾燥大気の大気定圧比熱 [J kg⁻¹ K⁻¹], (4.43)

$$\kappa \equiv R/C_p,\tag{4.45}$$

 ϵ_v : 水蒸気分子量比. (4.46)

4.2.6 境界条件

鉛直流に関する境界条件は

$$\dot{\sigma} = 0 \quad at \quad \sigma = 0, \ 1. \tag{4.47}$$

である. よって (4.1) から, 地表気圧の時間変化式と σ 系での鉛直速度 $\dot{\sigma}$ を求める 診断式

$$\frac{\partial \pi}{\partial t} = -\int_0^1 \boldsymbol{v}_H \cdot \nabla_\sigma \pi d\sigma - \int_0^1 D d\sigma, \qquad (4.48)$$

$$\dot{\sigma} = -\sigma \frac{\partial \pi}{\partial t} - \int_0^\sigma D d\sigma - \int_0^\sigma \boldsymbol{v}_H \cdot \nabla_\sigma \pi d\sigma, \qquad (4.49)$$

が導かれる.

4.2.7 水平拡散とスポンジ層

水平拡散とスポンジ層における渦度と発散の散逸は次のように表現する.

$$\mathcal{D}(\zeta) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(\zeta) + \mathcal{D}_{\mathcal{SL}}(\zeta) \tag{4.50}$$

$$\mathcal{D}(D) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(D) + \mathcal{D}_{\mathcal{SL}}(D) \tag{4.51}$$

$$\mathcal{D}(T) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(T) + \mathcal{D}_{\mathcal{S}\mathcal{L}}(T)$$
(4.52)

$$\mathcal{D}(q) = \mathcal{D}_{\mathcal{H}\mathcal{D}}(q) \tag{4.53}$$

ここで、 \mathcal{D}_{HD} 、 \mathcal{D}_{SL} はそれぞれ水平拡散とスポンジ層における散逸を表す.

水平拡散項は, 次のように ∇ND の形で計算する.

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(\zeta) = -K_{HD}\left[(-1)^{N_D/2}\nabla^{N_D}\right]\zeta,\tag{4.54}$$

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(D) = -K_{HD}\left[(-1)^{N_D/2}\nabla^{N_D}\right]D,\tag{4.55}$$

$$\mathcal{D}_{\mathcal{HD}}(T) = -(-1)^{N_D/2} K_{HD} \nabla^{N_D} T, \qquad (4.56)$$

$$\mathcal{D}_{\mathcal{H}\mathcal{D}}(q) = -(-1)^{N_D/2} K_{HD} \nabla^{N_D} q.$$
(4.57)

小さなスケールに選択的な水平拡散を表すため, 慣例として N_D には 4~16 を用 いることが多い.

スポンジ層における運動量の散逸項は,東西平均成分を減衰させる場合とさせない 場合の2通りの計算法を導入する.東西平均成分も減衰させる場合には,

$$\mathcal{D}_{\mathcal{SL}}(\zeta) = -\gamma_M \zeta, \qquad (4.58)$$

$$\mathcal{D}_{\mathcal{SL}}(D) = -\gamma_M D, \tag{4.59}$$

となる. ここで, γ_M はスポンジ層における運動量の減衰係数である. 東西平均成 分を減衰させない場合には,

$$\mathcal{D}_{\mathcal{SL}}(\zeta) = -\gamma_M(\zeta - \bar{\zeta}), \qquad (4.60)$$

$$\mathcal{D}_{\mathcal{SL}}(D) = -\gamma_M (D - \bar{D}), \qquad (4.61)$$

となる. ここで, ~は, 東西平均を表す.

スポンジ層内の温度擾乱の減衰には以下の項を導入する.

$$\mathcal{D}_{\mathcal{SL}}(T) = -\gamma_H(T - \bar{T}), \qquad (4.62)$$

ここで, *γ_H* はスポンジ層における温度擾乱の減衰係数である.

減衰係数 γ_M , γ_H の σ 依存性に一般形はないが, depam では下のような σ 依存性 を考慮する.

$$\gamma_M = \begin{cases} \gamma_{M,0} \left(\frac{\sigma_0}{\sigma}\right)^{N_{SL}}, & (\sigma \le \sigma_{lim}) \\ 0. & (\sigma > \sigma_{lim}) \end{cases}$$
(4.63)

$$\gamma_{H} = \begin{cases} \gamma_{H,0} \left(\frac{\sigma_{0}}{\sigma}\right)^{N_{SL}}, & (\sigma \leq \sigma_{lim}) \\ 0. & (\sigma > \sigma_{lim}) \end{cases}$$
(4.64)

ここで, $\gamma_{M,0}$, $\gamma_{H,0}$, N_{SL} , σ_{lim} はそれぞれ, $\sigma = \sigma_0$ における減衰係数, σ 依存性の指数, スポンジ層の下限の σ である. dcpam では, σ_0 はモデル最上層の σ として いる.

4.2.8 水平拡散係数の値を決めるための判断材料

水平拡散係数 K_{HD} の値は問題に応じて試行錯誤して決めることになる.

4.3 離散表現:鉛直離散化

ここでは支配方程式を鉛直方向に離散化する. Arakawa and Suarez(1983) に従って, (4.1)~(4.6) を鉛直方向に差分によって離散化する. 各方程式の離散化表現は

次のようになる.

4.3.1 連続の式,鉛直速度

$$\frac{\partial \pi}{\partial t} = -\sum_{k=1}^{K} (D_k + \boldsymbol{v}_k \cdot \nabla \pi) \Delta \sigma_k, \qquad (4.65)$$

$$\dot{\sigma}_{k-1/2} = -\sigma_{k-1/2} \frac{\partial \pi}{\partial t} - \sum_{l=k}^{K} (D_l + \boldsymbol{v}_l \cdot \nabla \pi) \Delta \sigma_l \qquad (k = 2, \cdots, K), \qquad (4.66)$$

$$\dot{\sigma}_{1/2} = \dot{\sigma}_{K+1/2} = 0. \tag{4.67}$$

ここで,

$$\boldsymbol{v}_k \cdot \nabla \pi = u_k \frac{\partial \pi}{\partial x} + v_k \frac{\partial \pi}{\partial y}.$$
(4.68)

4.3.2 静水圧の式

$$\Phi_1 = \Phi_s + C_p (\sigma_1^{-\kappa} - 1) T_{v,1}$$

= $\Phi_s + C_p \alpha_1 T_{v,1}.$ (4.69)

$$\Phi_{k} - \Phi_{k-1} = C_{p} \left[\left(\frac{\sigma_{k-1/2}}{\sigma_{k}} \right)^{\kappa} - 1 \right] T_{v,k} + C_{p} \left[1 - \left(\frac{\sigma_{k-1/2}}{\sigma_{k-1}} \right)^{\kappa} \right] T_{v,k-1}$$

$$= C_{p} \alpha_{k} T_{v,k} + C_{p} \beta_{k-1} T_{v,k-1}.$$
(4.70)

ここで,

$$\alpha_k = \left(\frac{\sigma_{k-1/2}}{\sigma_k}\right)^{\kappa} - 1, \tag{4.71}$$

$$\beta_k = 1 - \left(\frac{\sigma_{k+1/2}}{\sigma_k}\right)^{\kappa},\tag{4.72}$$

$$\Phi_s = g z_s \tag{4.73}$$

であり, z_sは地表面高度である.

4.3.3 運動方程式

$$\frac{\partial \zeta_k}{\partial t} = \frac{\partial V_{A,k}}{\partial x} - \frac{\partial U_{A,k}}{\partial y} + \mathcal{D}(\zeta_k), \qquad (4.74)$$

17

$$\frac{\partial D_k}{\partial t} = \frac{\partial U_{A,k}}{\partial x} + \frac{\partial V_{A,k}}{\partial y} - \nabla^2_{\sigma} (\Phi_k + C_p \hat{\kappa}_k \overline{T}_k \pi + (KE)_k) + \mathcal{D}(D_k).$$
(4.75)

ここで,

$$U_{A,1} = (\zeta_{1} + f)v_{1} - \frac{1}{2\Delta\sigma_{1}}\dot{\sigma}_{3/2}(u_{1} - u_{2}) - C_{p}\hat{\kappa}_{1}T_{v,1}^{\prime}\frac{\partial\pi}{\partial x} + \mathcal{F}_{x,1},$$

$$U_{A,k} = (\zeta_{k} + f)v_{k} - \frac{1}{2\Delta\sigma_{k}}[\dot{\sigma}_{k-1/2}(u_{k-1} - u_{k}) + \dot{\sigma}_{k+1/2}(u_{k} - u_{k+1})] - C_{p}\hat{\kappa}_{k}T_{v,k}^{\prime}\frac{\partial\pi}{\partial x} + \mathcal{F}_{x,k}, \qquad (k = 2, \cdots, K - 1)$$

$$U_{A,K} = (\zeta_{K} + f)v_{K} - \frac{1}{2\Delta\sigma_{K}}\dot{\sigma}_{K-1/2}(U_{K-1} - U_{K}) - C_{p}\hat{\kappa}_{K}T_{v,K}^{\prime}\frac{\partial\pi}{\partial x} + \mathcal{F}_{x,K},$$
(4.76)

$$V_{A,1} = -(\zeta_1 + f)u_1 - \frac{1}{2\Delta\sigma_1}\dot{\sigma}_{3/2}(v_1 - v_2) - C_p\hat{\kappa}_1 T'_{v,1}\frac{\partial\pi}{\partial y} + \mathcal{F}_{y,1}\cos\varphi,$$

$$V_{A,k} = -(\zeta_k + f)U_k - \frac{1}{2\Delta\sigma_k}[\dot{\sigma}_{k-1/2}(v_{k-1} - v_k) + \dot{\sigma}_{k+1/2}(v_k - v_{k+1})]$$

$$- C_p\hat{\kappa}_k T'_{v,k}\frac{\partial\pi}{\partial y} + \mathcal{F}_{y,k}, \qquad (k = 2, \cdots, K-1)$$
(4.77)

$$V_{A,K} = -(\zeta_{K} + f)u_{K} - \frac{1}{2\Delta\sigma_{K}}\dot{\sigma}_{K-1/2}(v_{K-1} - v_{K}) - C_{p}\hat{\kappa}_{K}T'_{v,K}\frac{\partial\pi}{\partial y} + \mathcal{F}_{y,K}, \hat{\kappa}_{k} = \frac{\sigma_{k-1/2}(\sigma^{\kappa}_{k-1/2} - \sigma^{\kappa}_{k}) + \sigma_{k+1/2}(\sigma^{\kappa}_{k} - \sigma^{\kappa}_{k+1/2})}{\sigma^{\kappa}_{k}(\sigma_{k-1/2} - \sigma_{k+1/2})} = \frac{\sigma_{k-1/2}\alpha_{k} + \sigma_{k+1/2}\beta_{k}}{\sigma^{\kappa}_{k-1/2}},$$
(4.78)

$$(KE)_k = \frac{u_k^2 + v_k^2}{2}.$$
(4.80)

4.3.4 熱力学の式

$$\frac{\partial T_k}{\partial t} = -\left(\frac{\partial (u_k T'_k)}{\partial x} + \frac{\partial (v_k T'_k)}{\partial y}\right) + H_k
+ \frac{Q_k}{C_p} + \mathcal{D}(T_k) + \mathcal{D}'(\boldsymbol{v}).$$
(4.81)

ここで,

$$H_{k} \equiv T_{k}^{\prime}D_{k} - \frac{1}{\Delta\sigma_{k}}[\dot{\sigma}_{k-1/2}(\hat{T}_{k-1/2} - T_{k}) + \dot{\sigma}_{k+1/2}(T_{k} - \hat{T}_{k+1/2})] \\ + \left\{\alpha_{k}\left[\sigma_{k-1/2}\boldsymbol{v}_{k}\cdot\nabla\pi - \sum_{l=k}^{K}(D_{l} + \boldsymbol{v}_{l}\cdot\nabla\pi)\Delta\sigma_{l}\right]\right\} \frac{1}{\Delta\sigma_{k}}T_{\boldsymbol{v},\boldsymbol{k}} \\ = T_{k}^{\prime}D_{k} - \frac{1}{\Delta\sigma_{k}}[\dot{\sigma}_{k-1/2}(\hat{T}_{k-1/2} - T_{k}) + \dot{\sigma}_{k+1/2}(T_{k} - \hat{T}_{k+1/2})] \\ + \hat{\kappa}_{k}\boldsymbol{v}_{k}\cdot\nabla\pi T_{\boldsymbol{v},\boldsymbol{k}} \\ - \alpha_{k}\sum_{l=k}^{K}(D_{l} + \boldsymbol{v}_{l}\cdot\nabla\pi)\Delta\sigma_{l}\frac{T_{\boldsymbol{v},\boldsymbol{k}}}{\Delta\sigma_{k}} \\ - \beta_{k}\sum_{l=k+1}^{K}(D_{l} + \boldsymbol{v}_{l}\cdot\nabla\pi)\Delta\sigma_{l}\frac{T_{\boldsymbol{v},\boldsymbol{k}}}{\Delta\sigma_{k}} \qquad (4.82) \\ H_{K} \equiv T_{K}^{\prime}D_{K} - \frac{1}{\Delta\sigma_{K}}[\dot{\sigma}_{K-1/2}(\hat{T}_{K-1/2} - T_{K}) + \dot{\sigma}_{K+1/2}(T_{K} - \hat{T}_{K+1/2})] \\ + \hat{\kappa}_{K}\boldsymbol{v}_{K}\cdot\nabla\pi T_{\boldsymbol{v},K} \\ - \alpha_{K}(D_{K} + \boldsymbol{v}_{K}\cdot\nabla\pi)\Delta\sigma_{K}\frac{T_{\boldsymbol{v},K}}{\Delta\sigma_{K}} \\ \end{array}$$

であり,

$$\hat{T}_{k-1/2} = \frac{\left[\left(\frac{\sigma_{k-1/2}}{\sigma_k}\right)^{\kappa} - 1\right] \sigma_{k-1}^{\kappa} T_k + \left[1 - \left(\frac{\sigma_{k-1/2}}{\sigma_{k-1}}\right)^{\kappa}\right] \sigma_k^{\kappa} T_{k-1}}{\sigma_{k-1}^{\kappa} - \sigma_k^{\kappa}} = a_k T_k + b_{k-1} T_{k-1} \qquad (k = 2, \cdots, K),$$

$$\hat{T}_{1/2} = 0,$$

$$\hat{T}_{K+1/2} = 0,$$
(4.83)

$$a_k = \alpha_k \left[1 - \left(\frac{\sigma_k}{\sigma_{k-1}} \right)^{\kappa} \right]^{-1}, \qquad (4.84)$$

$$b_k = \beta_k \left[\left(\frac{\sigma_k}{\sigma_{k+1}} \right)^{\kappa} - 1 \right]^{-1}.$$
(4.85)

4.3.5 水蒸気の式

$$\frac{\partial q_k}{\partial t} = -\left(\frac{\partial (u_k q_k)}{\partial x} + \frac{\partial (v_k q_k)}{\partial y}\right) + R_k + S_{q,k} + \mathcal{D}(q_k).$$
(4.86)

$$R_{1} = q_{1}D_{1} - \frac{1}{2\Delta\sigma_{1}}\dot{\sigma}_{3/2}(q_{1} - q_{2}),$$

$$R_{k} = q_{k}D_{k} - \frac{1}{2\Delta\sigma_{k}}\left[\dot{\sigma}_{k-1/2}(q_{k-1} - q_{k}) + \dot{\sigma}_{k+1/2}(q_{k} - q_{k+1})\right], \qquad (k = 2, \cdots, K - 1)$$

$$R_{K} = q_{K}D_{K} - \frac{1}{2\Delta\sigma_{K}}\dot{\sigma}_{K-1/2}(q_{K-1} - q_{K}).$$

$$(4.87)$$

4.3.6 鉛直差分に関する補足

 $\mathbf{2}$

Arakawa and Suarez (1983) による鉛直差分の取り方に関して, 説明を追加しておく.

Arakawa and Suarez (1983) の鉛直差分式は以下の特徴を持つ.

- ・ 圧力勾配項の鉛直積分を地形に沿った閉曲線に沿って線積分すると0になる (Arakawa and Suarez, 1983 は循環が0になるという書き方をしている) これは運動方程式の圧力勾配項に関する条件である.(地形無しの場合には角 運動量が保存することを意味する).
- 熱エネルギーと運動エネルギーとの変換項の有限差分近似は運動エネルギーの式でも熱エネルギーの式でも同じ形をとる.
- ・ θ の全球質量積分 (?) が断熱過程で保存されることが保証されている (保存, が指す具体的な内容は? flux form に準拠した差分式になっている, で正しい?)
- 静水圧の式から得られる最下層の層厚は local な形をしている
- 静水圧の式の差分形は鉛直方向にエントロピー一様な大気において正確な形をしている。
- *p*_{top} = 0, 3 次元等エントロピー大気の場合 (*T* = *a* + *b*(*p*/*p*₀)^κ の場合?) には, 圧力勾配項は正確な形になっている.
- しかし, θ の関数の global mass integral は断熱過程で保存されない.

²(2011-09-07 石渡) この節はまだ編集中である.

4.3.7 鉛直レベルの決め方

3

AGCM5 では, L16 の設定として以下のものが使われてきた.

k	$\sigma_{k+1/2}$
0	1
1	0.990
2	0.970
3	0.930
4	0.870
5	0.790
6	0.700
7	0.600
8	0.500
9	0.410
10	0.330
11	0.260
12	0.200
13	0.150
14	0.100
15	0.050
16	0.000

表 4.1: AGCM5 の L16 計算で習慣的に使われてきた鉛直格子点の位置. $\sigma_{k+1/2}$ は 半整数グリッドにおける σ 座標値.

4.4 離散表現:水平離散化

ここでは支配方程式を水平離散化する.水平方向の離散化は2重フーリエ変換法 を用いる.非線形項は格子点上で計算する.各方程式のスペクトル表現は以下のよ うになる.スペクトル表現に関する記号の意味については2.5節を参照されたい. なお,簡単化のため,部分的に鉛直方向添字 k を省略する.

³(2011-02-22 石渡) この節はまだ編集中である.

4.4.1 連続の式

$$\frac{\partial \tilde{\pi}^{p,q}}{\partial t} = -\sum_{k=1}^{K} (\tilde{D}^{p,q})_k \Delta \sigma_k - \sum_{k=1}^{K} \left(\widetilde{\boldsymbol{v}_k \cdot \nabla \pi} \right)^{p,q} \Delta \sigma_k \tag{4.88}$$

4.4.2 運動方程式

$$\frac{\partial \tilde{\zeta}^{p,q}}{\partial t} = \left(\frac{\partial V_A}{\partial x}\right)^{p,q} - \left(\frac{\partial U_A}{\partial y}\right)^{p,q} + \tilde{\mathcal{D}}_{M,n}^m \tilde{\zeta}^{p,q},$$

$$\frac{\partial \tilde{D}^{p,q}}{\partial t} = \left(\frac{\partial U_A}{\partial x}\right)^{p,q} + \left(\frac{\partial V_A}{\partial y}\right)^{p,q} + \left(\widetilde{\nabla_{\sigma}^2 K E_k}\right)^{p,q} + \left[\nabla_{\sigma}^2 (\Phi_k + C_p \hat{\kappa}_k \bar{T}_k \pi)\right]^{p,q} + \tilde{\mathcal{D}}_{M,n}^m \tilde{D}^{p,q}.$$
(4.89)
$$(4.89)$$

$$(4.89)$$

ここで,

$$\tilde{\mathcal{D}}_{M,n}^{m} = -K_{HD}(r^{2})^{N_{D}/2} - \tilde{\gamma}_{M,k}^{p,q}, \qquad (4.91)$$

$$\tilde{\gamma}_{M,k}^{p,q} = \begin{cases} \tilde{\gamma}_{M,0}^{p,q} \left(\frac{\sigma_K}{\sigma_k}\right)^{N_{SL}}, & (k \ge k_{SLlim}) \\ 0. & (k < k_{SLlim}) \end{cases}$$
(4.92)

ここで r² は p, q 成分の水平全波数,

$$r^{2} = \left(\frac{2\pi p}{L_{x}}\right)^{2} + \left(\frac{2\pi q}{L_{y}}\right)^{2}, \qquad (4.93)$$

k_{SLlim} はスポンジ層を適応する下限の k である.

なお、dcpam では、 K_{HD} は打ち切り波数成分の減衰時定数 (1/e になる時間)、 τ_{HD} 、 を用いて与える. つまり、

$$K_{HD} = \frac{1}{\tau_{HD}} \left[\left(\frac{2\pi N_p}{L_x} \right)^2 + \left(\frac{2\pi N_q}{L_y} \right)^2 \right]^{-N_D/2}$$
(4.94)

である.

4.4.3 熱力学の式

$$\frac{\partial \tilde{T}_{k}^{p,q}}{\partial t} = -\left(\frac{\partial (uT')_{k}}{\partial x}\right)^{p,q} - \left(\frac{\partial (vT')_{k}}{\partial y}\right)^{p,q} + \tilde{H}_{k}^{p,q} + \frac{\tilde{Q}_{k}^{p,q}}{C_{p}} + \tilde{\mathcal{D}}_{H}^{p,q}\tilde{T}_{k}^{p,q} + [\widetilde{\mathcal{D}'(\boldsymbol{v})}]_{k}^{p,q}.$$
(4.95)

ここで,

$$\tilde{\mathcal{D}}_{H}^{p,q} = -K_{HD}(r^{2})^{N_{D}/2} - \tilde{\gamma}_{H,k}^{p,q}.$$
(4.96)

$$\tilde{\gamma}_{H,k}^{p,q} = \begin{cases} \tilde{\gamma}_{H,0}^{p,q} \left(\frac{\sigma_K}{\sigma_k}\right)^{N_{SL}}, & (k \ge k_{SLlim}) \\ 0, & (k < k_{SLlim}) \end{cases}$$
(4.97)

$$\tilde{\gamma}_{H,0}^{p,q} = \begin{cases} \gamma_{H,0}, & (m \neq 0) \\ 0, & (m = 0) \end{cases}$$
(4.98)

である.

4.4.4 水蒸気の式

$$\frac{\partial \tilde{q}_k^{p,q}}{\partial t} = -\left(\frac{\widetilde{\partial(uq)_k}}{\partial x}\right)^{p,q} - \left(\frac{\widetilde{\partial(vq)_k}}{\partial y}\right)^{p,q} + \tilde{R}_k^{p,q} + \tilde{S}_{q,k}^{p,q} + \tilde{\mathcal{D}}_q^{p,q}\tilde{q}_k^{p,q}.$$
(4.99)

ここで,

$$\tilde{\mathcal{D}}_{q}^{p,q} = -K_{HD}(r^2)^{N_D/2} \tag{4.100}$$

である.

4.5 離散表現:時間離散化

ここでは時間積分スキームについて記す.

時間差分には、複数の方法を組み合わせて用いる.用いる方法の概要を以下に示す.

- 力学過程
 - 水平拡散およびスポンジ層における減衰項には,後方差分を用いる.
 - その他の項には, leap frog 法と Crank-Nicolson 法を組み合わせた semiimplicit 法 (Bourke, 1988) を用いる.
- 物理過程
 - 予報型の物理過程には,前方差分を用いる.

- 調節型の物理過程は, semi-implicit 法での力学過程積分後に計算された 値を用いて計算する.
- 時間フィルタ
 - 力学過程, 物理過程のすべての計算後に, 力学過程で用いている leap frog 法を起源とする計算モード抑制のための時間フィルター (Asselin, 1972) を適応する.

この方法は、予報変数を A と表すと、以下の 3 式で表現される.

$$\frac{\hat{\mathcal{A}}^{t+\Delta t} - \bar{\mathcal{A}}^{t-\Delta t}}{2\Delta t} = \frac{1}{2} \left\{ \dot{\mathcal{A}}_{dyn,G} \left(\bar{\mathcal{A}}^{t-\Delta t} \right) + \dot{\mathcal{A}}_{dyn,G} \left(\hat{\mathcal{A}}^{t+\Delta t} \right) \right\} + \dot{\mathcal{A}}_{dyn,NG} \left(\mathcal{A}^{t} \right) + \dot{\mathcal{A}}_{dyn,dis} \left(\hat{\mathcal{A}}^{t+\Delta t} \right) + \dot{\mathcal{A}}_{phy,pred} \left(\bar{\mathcal{A}}^{t-\Delta t} \right), \quad (4.101)$$

$$\mathcal{A}^{t+\Delta t} = \hat{\mathcal{A}}^{t+\Delta t} + 2\Delta t \dot{\mathcal{A}}_{fric} \left(\hat{\mathcal{A}}^{t+\Delta t} \right) + 2\Delta t \dot{\mathcal{A}}_{phy,adj} \left(\hat{\mathcal{A}}^{t+\Delta t} \right), \qquad (4.102)$$

$$\bar{\mathcal{A}}^t = \mathcal{A}^t + \epsilon_f \left(\bar{\mathcal{A}}^{t-\Delta t} - 2\mathcal{A}^t + \mathcal{A}^{t+\Delta t} \right).$$
(4.103)

ここで, $\dot{A}_{dyn,G}$, $\dot{A}_{dyn,NG}$ はそれぞれ, 力学過程において semi-implicit 法で分離さ れた重力波項 (線型項) と非重力波項 (非線型項), $\dot{A}_{dyn,dis}$ は水平拡散とスポンジ 層における減衰項, $\dot{A}_{phy,pred}$ は予報型の物理過程項である. \dot{A}_{fric} , $\dot{A}_{phy,adj}$ は, それ ぞれ摩擦熱による加熱項および調節型の物理過程項である. ϵ_f は時間フィルタの 係数であり, dcpam での標準値は 0.05 としている.

4.5.1 力学過程の方程式系の時間差分式

まず, semi-implicit 法を用いるために, 方程式系を $T = \overline{T}_k$ である静止場に基づいて線形重力波項とそれ以外の項に分離する. 鉛直方向のベクトル表現 $A = \{A_k\}$,および行列表現 $\underline{A} = \{A_{kl}\}$ を用いると, 連続の式, 発散方程式, 熱力学の式は,

$$\frac{\partial \tilde{\pi}^{p,q}}{\partial t} = \left(\frac{\partial \tilde{\pi}^{p,q}}{\partial t}\right)^{\text{NG}} - \boldsymbol{C} \cdot \tilde{\boldsymbol{D}}^{p,q}, \qquad (4.104)$$

$$\frac{\partial \tilde{\boldsymbol{D}}^{p,q}}{\partial t} = \left(\frac{\partial \tilde{\boldsymbol{D}}^{p,q}}{\partial t}\right)^{\mathrm{NG}} - \nabla_{\sigma}^{2} (\tilde{\boldsymbol{\Phi}}^{p,q}_{s} + \underline{W} \tilde{\boldsymbol{T}}^{p,q} + \boldsymbol{G} \tilde{\boldsymbol{\pi}}^{p,q}) + \underline{\tilde{\mathcal{D}}_{M}}^{p,q} \tilde{\boldsymbol{D}}^{p,q}, \qquad (4.105)$$

basic equations.tex(dynamics/dyn-tintegral-lf-si.tex)

$$\frac{\partial \tilde{\boldsymbol{T}}^{p,q}}{\partial t} = \left(\frac{\partial \tilde{\boldsymbol{T}}^{p,q}}{\partial t}\right)^{\mathrm{NG}} - \underline{h}\tilde{\boldsymbol{D}}^{p,q} + \underline{\tilde{\mathcal{D}}_{H}}^{p,q}\tilde{\boldsymbol{T}}^{p,q}$$
(4.106)

となる⁴. ()^{p,q} や[]^{p,q} といった表記については 2.5 節を参照のこと. ここで, 添 字 NG の付いた項は, 非重力波項であり, 以下のように表される.

$$\left(\frac{\partial \tilde{\pi}^{p,q}}{\partial t}\right)^{\mathrm{NG}} = -\sum_{k=1}^{K} \left(\widetilde{\boldsymbol{v}_k \cdot \nabla \pi}\right)^{p,q} \Delta \sigma_k, \qquad (4.107)$$

$$\left(\frac{\partial \tilde{D}_{k}^{p,q}}{\partial t}\right)^{\mathrm{NG}} = \left(\left[\frac{\partial \widetilde{U_{A,k}}}{\partial x}\right]^{p,q} + \left[\frac{\partial \widetilde{V_{A,k}}}{\partial y}\right]^{p,q}\right) - \left\{\nabla_{\sigma}^{2}\left[(KE)_{k} + \widetilde{\sum_{l=1}^{K}}W_{kl}(T_{v,l} - T_{l})\right]\right\}^{p,q},$$

$$\left(\partial \tilde{T}_{k}^{p,q}\right)^{\mathrm{NG}} = 1\left(\left[\partial \widetilde{(u_{k}T_{l}')}\right]^{p,q} - \left[\partial \widetilde{(v_{k}T_{l}')}\right]^{p,q}\right) = \widetilde{(u_{k}U}^{p,q}$$

$$\left(\partial \widetilde{U}_{k}^{p,q}\right)^{\mathrm{NG}} = 1\left(\left[\partial \widetilde{(u_{k}T_{l}')}\right]^{p,q} - \left[\partial \widetilde{(v_{k}T_{l}')}\right]^{p,q}\right) = \widetilde{(u_{k}U}^{p,q}$$

$$\left(\partial \widetilde{U}_{k}^{p,q}\right)^{\mathrm{NG}} = 1\left(\left[\partial \widetilde{(u_{k}T_{l}')}\right]^{p,q} - \left[\partial \widetilde{(v_{k}T_{l}')}\right]^{p,q}\right) = \widetilde{(u_{k}U}^{p,q}$$

$$\left(\frac{\partial T_k}{\partial t}\right)^{p,q} = -\frac{1}{a} \left(\left[\frac{\partial (u_k T_k')}{\partial x}\right]^{p,q} + \left[\frac{\partial (v_k T'_k)}{\partial y}\right]^{p,q} \right) + \widetilde{[H_k]^{p,q}}.$$
 (4.109)

各項は以下の通りである. 簡単化のため水平方向添字 *i*, *j* の表記を省略する.

$$\begin{split} H_{k} &= T_{k}^{\prime} D_{k} \\ &- \frac{1}{\Delta \sigma_{k}} \left[\dot{\sigma}_{k-1/2} \left(\hat{T}'_{k-1/2} - T_{k}' \right) + \dot{\sigma}_{k+1/2} \left(T_{k}' - \hat{T}'_{k+1/2} \right) \right] \\ &- \frac{1}{\Delta \sigma_{k}} \left[\dot{\sigma}_{k-1/2}^{\mathrm{NG}} \left(\hat{\overline{T}}_{k-1/2} - \overline{T}_{k} \right) + \dot{\sigma}_{k+1/2}^{\mathrm{NG}} \left(\overline{T}_{k} - \hat{\overline{T}}_{k+1/2} \right) \right] \\ &+ \hat{\kappa}_{k} T_{v,k} \boldsymbol{v}_{k} \cdot \nabla \pi \\ &- \frac{\alpha_{k}}{\Delta \sigma_{k}} \left[T_{v,k} \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l} + T_{v,k}' \sum_{l=k}^{K} D_{l} \Delta \sigma_{l} \right] \\ &- \frac{\beta_{k}}{\Delta \sigma_{k}} \left[T_{v,k} \sum_{l=k+1}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l} + T_{v,k}' \sum_{l=k+1}^{K} D_{l} \Delta \sigma_{l} \right] \qquad (k = 1, \cdots, K-1), \\ H_{K} &= T_{K}' D_{K} \\ &- \frac{1}{\Delta \sigma_{K}} \left[\dot{\sigma}_{K-1/2} \left(\hat{T}'_{K-1/2} - T_{K}' \right) + \dot{\sigma}_{K+1/2} \left(T_{K}' - \hat{T}'_{K+1/2} \right) \right] \\ &- \frac{1}{\Delta \sigma_{K}} \left[\dot{\sigma}_{K-1/2}^{\mathrm{NG}} \left(\hat{\overline{T}}_{K-1/2} - \overline{T}_{K} \right) + \dot{\sigma}_{K+1/2}^{\mathrm{NG}} \left(\overline{T}_{K} - \hat{\overline{T}}_{K+1/2} \right) \right] \\ &+ \hat{\kappa}_{K} T_{v,K} \boldsymbol{v}_{K} \cdot \nabla \pi \end{split}$$

$$-\frac{\alpha_{K}}{\Delta\sigma_{K}}\left[T_{v,K}\boldsymbol{v}_{K}\cdot\nabla\pi\Delta\sigma_{K}+T_{v,K}^{\prime}D_{K}\Delta\sigma_{K}\right],$$
(4.110)

⁴念のため注記しておくと、 $\tilde{\mathbf{\Phi}}_{s}^{p,q} = \left(\tilde{\Phi}_{s}^{p,q}, \tilde{\Phi}_{s}^{p,q}, \cdots, \tilde{\Phi}_{s}^{p,q}\right)$ である.

$$\dot{\sigma}_{k-1/2}^{\mathrm{NG}} = -\sigma_{k-1/2} \left(\frac{\partial \pi}{\partial t}\right)^{\mathrm{NG}} - \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l}$$

$$= \sigma_{k-1/2} \sum_{k=1}^{K} \boldsymbol{v}_{k} \cdot \nabla \pi \Delta \sigma_{k} - \sum_{l=k}^{K} \boldsymbol{v}_{l} \cdot \nabla \pi \Delta \sigma_{l},$$
(4.111)

 $\mathbf{25}$

$$\hat{T}'_{k-1/2} = \begin{cases} 0, & (k=1) \\ \hat{T}_{k-1/2} - \hat{\overline{T}}_{k-1/2}, & (k=2,\cdots,K) \\ 0, & (k=K+1) \end{cases}$$
(4.112)

$$\hat{\overline{T}}_{k-1/2} = \begin{cases} 0, & (k=1) \\ a_k \overline{T}_k + b_{k-1} \overline{T}_{k-1}, & (k=2,\cdots,K) \\ 0. & (k=K+1) \end{cases}$$
(4.113)

また,重力波項のベクトルおよび行列は以下のとおりである.

$$C_k = \Delta \sigma_k, \tag{4.114}$$

$$W_{kl} = C_p \alpha_l \delta_{k \ge l} + C_p \beta_l \delta_{k-1 \ge l}, \tag{4.115}$$

$$G_k = \hat{\kappa}_k C_p \overline{T}_k, \tag{4.116}$$

$$\underline{h} = \underline{QS} - \underline{R}, \tag{4.117}$$

$$Q_{kl} = \frac{1}{\Delta\sigma_k} (\hat{\overline{T}}_{k-1/2} - \overline{T}_k) \delta_{k=l} + \frac{1}{\Delta\sigma_k} (\overline{T}_k - \hat{\overline{T}}_{k+1/2}) \delta_{k+1=l}, \qquad (4.118)$$

$$S_{kl} = \sigma_{k-1/2} \Delta \sigma_l - \Delta \sigma_l \delta_{k \le l}, \tag{4.119}$$

$$R_{kl} = -\left(\frac{\alpha_k}{\Delta\sigma_k}\Delta\sigma_l\delta_{k\leq l} + \frac{\beta_k}{\Delta\sigma_k}\Delta\sigma_l\delta_{k+1\leq l}\right)\overline{T}_k,$$

$$(4.120)$$

$$\tilde{(\mathcal{D}_{M,kl})}^{p,q} = -K_{HD}(r^2)^{N_D/2}\delta_{k=l}$$

$$\gamma_{M,0,n}^{q} = -K_{HD}(r^{2})^{N_{D}/2} \delta_{k=l} - \gamma_{M,0,n}^{m} \left(\frac{\sigma_{k}}{\sigma_{K}}\right)^{N_{SL}} \delta_{k=l} \delta_{k\geq k_{SLlim}}.$$
(4.121)

$$(\tilde{\mathcal{D}}_{H,kl})_{n}^{m} = -K_{HD}(r^{2})^{N_{D}/2}\delta_{k=l} - \gamma_{H,0,n}^{m} \left(\frac{\sigma_{k}}{\sigma_{K}}\right)^{N_{SL}} \delta_{k=l}\delta_{k\geq k_{SLlim}}.$$
(4.122)

ここで r² は p, q 成分の水平全波数,

$$r^{2} = \left(\frac{2\pi p}{L_{x}}\right)^{2} + \left(\frac{2\pi q}{L_{y}}\right)^{2}, \qquad (4.123)$$

 $\delta_{k \leq l}$ は, $k \leq l$ が成り立つとき 1, そうでないとき 0 となる関数である.

なお, 渦度方程式には線型重力波項がないため, ここでは示さない. ⁵ これらの方程式に,

- 水平拡散とスポンジ層における減衰項には後退差分
- その他の項には, leap frog 法と中心差分を組み合わせた semi-implicit 法

を適応すると,

$$\delta_t \tilde{\pi}^{p,q} = \left(\frac{\partial \tilde{\pi}^{p,q}}{\partial t}\right)^{\text{NG}} - \boldsymbol{C} \cdot \overline{\boldsymbol{\tilde{D}}}^{p,q^t}, \qquad (4.124)$$

$$\delta_t \tilde{\boldsymbol{D}}^{p,q} = \left(\frac{\partial \tilde{\boldsymbol{D}}^{p,q}}{\partial t}\right)^{\mathrm{NG}} + (r^2)(\tilde{\boldsymbol{\Phi}}^{p,q}_s + \underline{W}\overline{\tilde{\boldsymbol{T}}^{p,q}}^t + \boldsymbol{G}\overline{\tilde{\pi}^{p,q}}^t) + \underline{\tilde{\mathcal{D}}_M}^{p,q}\tilde{\boldsymbol{D}}^{p,q,t+\Delta t}, \quad (4.125)$$

$$\delta_t \tilde{\boldsymbol{T}}^{p,q} = \left(\frac{\partial \tilde{\boldsymbol{T}}^{p,q}}{\partial t}\right)^{\text{NG}} - \underline{h} \overline{\tilde{\boldsymbol{D}}}^{p,q^t} + \underline{\tilde{\mathcal{D}}}_{H}^{p,q} \tilde{\boldsymbol{T}}^{p,q,t+\Delta t}.$$
(4.126)

となる. ただし,

$$\delta_t \mathcal{A} \equiv \frac{1}{2\Delta t} \left(\mathcal{A}^{t+\Delta t} - \mathcal{A}^{t-\Delta t} \right), \qquad (4.127)$$

$$\overline{\mathcal{A}}^{t} \equiv \frac{1}{2} \left(\mathcal{A}^{t+\Delta t} + \mathcal{A}^{t-\Delta t} \right) = \mathcal{A}^{t-\Delta t} + \delta_{t} \mathcal{A} \Delta t.$$
(4.128)

である.

⁵ここは本当は方程式を書くべきだろう.後で書く.(YOT, 2009/10/11)

$$(4.124), (4.125), (4.126) より, \tilde{\boldsymbol{D}}^{p,q^{v}} について整理すると,
\left[(\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{M}}^{p,q}) + (\Delta t)^{2} (r^{2}) \left\{ \underline{W} (\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{H}}^{p,q})^{-1} \underline{h} + \boldsymbol{G} \boldsymbol{C}^{T} \right\} \right] \overline{\boldsymbol{D}}^{p,q^{t}}
= (\underline{I} - \Delta t \underline{\tilde{\mathcal{D}}_{M}}^{p,q}) \tilde{\boldsymbol{D}}^{p,q,t-\Delta t} + \Delta t \left(\frac{\partial \tilde{\boldsymbol{D}}^{p,q}}{\partial t} \right)^{\mathrm{NG}}
+ \Delta t r^{2} \left[\tilde{\boldsymbol{\Phi}}_{s}^{p,q}
+ \underline{W} (\underline{I} - 2\Delta t \underline{\tilde{\mathcal{D}}_{H}}^{p,q})^{-1} \left\{ (\underline{I} - \Delta t \underline{\tilde{\mathcal{D}}_{H}}^{p,q}) \tilde{\boldsymbol{T}}^{p,q,t-\Delta t} + \Delta t \left(\frac{\partial \tilde{\boldsymbol{T}}^{p,q}}{\partial t} \right)^{\mathrm{NG}} \right\}
+ \boldsymbol{G} \left\{ \tilde{\pi}^{p,q,t-\Delta t} + \Delta t \left(\frac{\partial \tilde{\pi}^{p,q}}{\partial t} \right)^{\mathrm{NG}} \right\}$$

$$(4.129)$$

となる. ここで<u>I</u>は単位行列, C^{T} はCの転置ベクトルである. (4.129) を $\overline{\tilde{D}}^{p,q^{t}}$ について解き,

$$\tilde{\boldsymbol{D}}^{p,q,t+\Delta t} = 2\overline{\tilde{\boldsymbol{D}}^{p,q^{t}}} - \tilde{\boldsymbol{D}}^{p,q,t-\Delta t}$$
(4.130)

および, (4.124), (4.126) により $\hat{\mathcal{A}}^{t+\Delta t}$ が求められる.

4.6 参考文献

- Arakawa, A., Suarez, M. J., 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111, 34–35.
- Asselin, R. A., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487–490.
- Bourke, W.P., 1988: Spectral methods in global climate and weather prediction models. *Physically-Based Modelling and Simulation of Climates and Climatic Change. Part I.*, M.E. Schlesinger (ed.), Kluwer Academic Publishers, Dordrecht, 169–220.
- Haltiner, G.J., Williams, R.T., 1980: Numerical Prediction and Dynamic Meteorology (2nd ed.). John Wiley & Sons, 477pp.

- Held, I. M. and Suarez, M. J., 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circuation models. *Bull. Am. Meteor. Soc.*, **75**, 1825–1830.
- Koshyk, J. N. and Hamiltion, K., 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere-stratospheremesosphere GCM. J. Atmos. Sci., 58, 329–348.
- Takahashi, Y. O., Hamilton, K., Ohfuchi, W., 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. *Geophys. Res. Lett.*, 33, L12812, doi:10.1029/2006GL026429.

石岡 圭一, 2004: スペクトル法による数値計算入門. 東京大学出版会, 232pp.

第5章 物理過程で用いる予備変数

5.1 はじめに

物理過程の演算においては,しばしば鉛直層の境界における温度や,鉛直層の境界 や中心の高度が必要となる.ここでは,それらの計算方法を示す.

5.2 離散表現

5.2.1 鉛直層境界における温度

注: この節の内容のコードとの対応は確認していない. というより, コードの内容 がわかりにくい.

層の境界における温度は、下のように計算することにする. $1 \le k \le k_{max} - 1$ の とき、

$$T_{k+\frac{1}{2}} = \alpha_{k+\frac{1}{2}}T_k + \beta_{k+\frac{1}{2}}T_{k+1}$$

$$\log \sigma_{k+1} = \log \sigma_{k+1}$$
(5.1)

$$\alpha_{k+\frac{1}{2}} = \frac{\log \sigma_{k+\frac{1}{2}} - \log \sigma_{k+1}}{\log \sigma_k - \log \sigma_{k+1}}$$
(5.2)

$$\beta_{k+\frac{1}{2}} = \frac{\log \sigma_k - \log \sigma_{k+\frac{1}{2}}}{\log \sigma_k - \log \sigma_{k+1}}$$
(5.3)

とし、k = 0のとき、

$$T_{\frac{1}{2}} = T_1$$
 (5.4)

$$T_{k_{max}+\frac{1}{2}} = T_{k_{max}} \tag{5.5}$$

とする. $1 \le k \le k_{max} - 1$ の場合の表現は、気圧に対する対数的な線型内挿である.

5.2.2 鉛直層中心と境界における高度

層の中心における高度は、下のように計算することにする.

$$z_1 = z_s + \frac{R}{g} T_1 (1 - \sigma_1)$$
(5.6)

$$z_{k} = z_{k-1} + \frac{R}{g} T_{k-\frac{1}{2}} \frac{\sigma_{k-1} - \sigma_{k}}{\sigma_{k-\frac{1}{2}}}$$
(5.7)

一方,層の境界における高度は、下のように計算することにする.

$$z_{\frac{1}{2}} = z_s \tag{5.8}$$

$$z_{k+\frac{1}{2}} = z_{k-\frac{1}{2}} + \frac{R}{g} T_k \frac{\sigma_{k-\frac{1}{2}} - \sigma_{k+\frac{1}{2}}}{\sigma_k}$$
(5.9)

第6章 放射

この章は編集中です (yot, 2011/07/01).

6.1 はじめに

ここでは放射モデルについて述べる.まず初めに,基本となる加熱率,散乱のない 場合の放射伝達方程式,散乱を考慮した放射伝達方程式について述べる.その後に, 地球流体電脳倶楽部 AGCM5 で標準として用いられていた放射モデル,地球大気 用放射モデルのそれぞれに特有の点について述べる.

6.2 数理表現: 共通部分

6.2.1 加熱率

放射過程による加熱率は下のように表現される.

$$Q = -\frac{1}{C_p \rho} \frac{\partial F}{\partial z} \tag{6.1}$$

$$= \frac{g}{C_p} \frac{\partial F}{\partial p} \tag{6.2}$$

$$F = F_L + F_S \tag{6.3}$$

ここで, F_L , F_S はそれぞれ長波放射フラックスと短波放射フラックスである. この ように, ほとんどの場合には長波放射と短波放射は別々に扱われる.
散乱を無視した場合の放射伝達方程式 6.2.2

考える波数帯における透過率は別途何らかの方法で与えられるとすると, 散乱を無 視した場合の放射伝達方程式は下のように書くことができる.

$$F(\tau) = F^{+}(\tau) - F^{-}(\tau)$$
(6.4)

$$F(\tau)^{+} = \pi B_s \mathcal{T}(\tau_s, \tau) - \int_{\tau}^{\tau_s} \pi B(\tau') \frac{d\mathcal{T}(\tau, \tau')}{d\tau'} d\tau'$$
(6.5)

$$F(\tau)^{-} = \int_{0}^{\tau} \pi B(\tau') \frac{d\mathcal{T}(\tau,\tau')}{d\tau'} d\tau'$$
(6.6)

また, 放射フラックスを上向きと下向きに分ける必要がなければ, フラックスは下 のように書ける.

$$F(\tau) = \pi B_s \mathcal{T}(\tau_s, \tau) - \int_0^{\tau_s} \pi B(\tau') \frac{d\mathcal{T}(\tau, \tau')}{d\tau'} d\tau'$$
(6.7)

ここで、B はプランク関数, あるいはその積分値であり, T は透過率である. B は,

$$\pi B(\tau) = \pi \int_{k_{min}}^{k_{max}} B(T(\tau)) dk$$
(6.8)

$$\pi B_s = \pi \int_{k_{min}}^{k_{max}} B(T_s) \, dk \tag{6.9}$$

である. ここで, k は波数であり, B(T) はプランク関数である¹. 特に灰色大気を 考える場合には、ステファン・ボルツマン定数 σ_{SB} を用いて、

$$\pi B(\tau) = \sigma_{SB} T^4(\tau) \tag{6.10}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{6.11}$$

となる.

なお、下部境界にフラックスの値を与えることもでき、その時には、与えるフラッ クスを F_{LB} として, $\pi B_s = F_{LB}$ とすればよい.

透過率 $\mathcal{T}(\tau, \tau')$ は, 例えば光学的厚さが与えられる場合, 下のように表される.

$$\mathcal{T}(\tau, \tau') = \mathcal{T}(\tau(p), \tau(p'))$$

= exp[-\alpha{|\tau_L(p) - \tau_L(p')|]} (6.12)

α は散光因子である.光学的厚さはどのように与えても良いが, 例えば Schneider and Liu (2009) では,下のように与えている.

$$\tau_L(p) = \tau_{L,0} \left(\frac{p}{p_0}\right)^2 \tag{6.13}$$

¹*B* の文字がかぶっている.

ここで、*p*₀, *τL*₀ はそれぞれ基準気圧とその気圧での光学的厚さである.

一方, Numaguti et al. (1992) の放射モデルでは, (k 分布法に似せた記述をしてい ることを除くと) 下のように与えている.

$$\tau_L(p) = k_{L,wv} \int_{z(p)}^{\infty} \rho q_{wv} dz' + k_{L,da} \int_{z(p)}^{\infty} \rho dz'$$
(6.14)

$$= k_{L,wv} \frac{1}{g} \int_0^p q_{wv} dp' + k_{L,da} \frac{p}{g}$$
(6.15)

ここで, $k_{L,wv}$, $k_{L,da}$ はそれぞれ水蒸気と乾燥大気の吸収係数であり, q_{wv} は比湿である.

一方, バンドモデルを用いる場合は, 別途異なる表現で与えられる.

6.2.3 射出のない場合の散乱を考慮した放射伝達方程式

散乱を考慮した放射伝達の定式化にはいくつかの方法がある. ここでは, 一般化さ れた二方向近似した放射伝達方程式 (e.g., Liou, 2002; Toon et al., 1989) について 述べる. 特に, 以下に示す式の定式化は, Toon et al. (1989) に従う.

射出のない均質大気に対する,一般化された二方向近似した放射伝達方程式の解は 下のように書くことができる.

$$F^{+}(\tau) = k_1 \exp(\lambda \tau) + \Gamma k_2 \exp(-\lambda \tau) + C^{+}(\tau)$$
 (6.16)

$$F^{-}(\tau) = \Gamma k_{1} \exp(\lambda \tau) + k_{2} \exp(-\lambda \tau) + C^{-}(\tau)$$
(6.17)

$$C^{+}(\tau) = \frac{\omega_{0}\pi F_{s} \exp\left(-\frac{\tau}{\mu_{0}}\right) \left\{\frac{\gamma_{1} - \overline{\mu_{0}}}{\gamma_{3}} + \gamma_{4}\gamma_{2}\right\}}{\lambda^{2} - \frac{1}{\mu_{0}^{2}}}$$
(6.18)

$$C^{-}(\tau) = \frac{\omega_{0}\pi F_{s} \exp\left(-\frac{\tau}{\mu_{0}}\right) \left\{\frac{\gamma_{1} + \frac{1}{\mu_{0}}}{\gamma_{4}} + \gamma_{2}\gamma_{3}\right\}}{\lambda^{2} - \frac{1}{\mu_{0}^{2}}}$$
(6.19)

$$\lambda = (\gamma_1^2 - \gamma_2^2)^{1/2}$$
 (6.20)

$$\Gamma = \frac{\gamma_2}{\gamma_1 + \lambda} \tag{6.21}$$

ここで、 γ_1 、 γ_2 、 γ_3 、 γ_4 は、後述する係数であり、 ω_0 は一次散乱アルベド、 πF_s は大気上端での下向き入射放射フラックス、 μ_0 は太陽天頂角である. k_1 、 k_2 は定数であり、境界条件により決める.

γ1, γ2, γ3, γ4 は, 放射伝達方程式の近似方法によって異なる係数である. ここでは, dcpam で用いている δ-Eddington 近似の際に用いる係数を以下に示す.

$$\gamma_1 = \frac{7 - \omega_0(4 + 3g)}{4} \tag{6.22}$$

$$\gamma_2 = -\frac{1 - \omega_0 (4 - 3g)}{4} \tag{6.23}$$

$$\gamma_3 = \frac{2 - 3g\mu_0}{4} \tag{6.24}$$

$$\gamma_4 = 1 - \gamma_3 \tag{6.25}$$

さらに, δ -修正 (δ -adjustment) を行うため, τ , ω_0 , g は元々の値... を用いて下のよ うに求める.

...

離散表現: 共通部分 6.3

この節の内容のコードとの対応は確認していない. 符号が違うかも. (コードの方 を直していない.)

6.3.1加熱率

放射加熱率は下のように離散化される.

$$Q_k = \frac{g}{C_p} \frac{F_{k+\frac{1}{2}} - F_{k-\frac{1}{2}}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}$$
(6.26)

散乱を無視した場合の放射伝達方程式 6.3.2

長波放射フラックスは下のように離散化される.

$$F_{k+\frac{1}{2}} = F_{k+\frac{1}{2}}^{+} - F_{k+\frac{1}{2}}^{-}$$

$$(6.27)$$

$$F_{k+\frac{1}{2}}^{+} = \pi B_{s} \mathcal{T}_{k+\frac{1}{2},\frac{1}{2}} - \sum_{k'=1}^{\kappa} \pi B_{k'} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(6.28)

$$F_{k+\frac{1}{2}}^{-} = \sum_{k'=k+1}^{k_{max}} \pi B_{k'} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(6.29)

また、放射フラックスを上向きと下向きに分ける必要がなければ下のように書ける.

$$F_{k+\frac{1}{2}} = \pi B_s \mathcal{T}_{k+\frac{1}{2},\frac{1}{2}} - \sum_{k'=1}^{k_{max}} \pi B_{k'} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(6.30)

ここで, Bは

$$\pi B_k = \pi \sum_{i}^{N} B_i (T_k, k_i) w_i$$
(6.31)

$$\pi B_{s} = \pi \sum_{i}^{N} B_{i} (T_{s,k}, i_{i}) w_{i}$$
(6.32)

ここでは, *w* はガウス重みであり, 波数積分はガウス求積法で評価する. または, 灰 色大気の場合には,

$$\pi B_k = \sigma_{SB} T_k^4 \tag{6.33}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{6.34}$$

となる.

また、光学的厚さが与えられる場合の透過率は下のように離散化される.

$$\mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} = \exp(-\alpha(|\tau_{L,k+\frac{1}{2}} - \tau_{L,k'+\frac{1}{2}}|))$$
(6.35)

一方, 放射過程の一部は, 惑星表面の熱収支を通して鉛直拡散過程や惑星表面の熱 収支と関係しており, それらの方程式を連立して同時に解くことになる. 鉛直拡散 過程や惑星表面の熱収支は陰解法で計算しているため, 放射伝達方程式の一部につ いて線型化し, 放射フラックスの温度に対する変化率を求めておく必要がある. 放 射フラックスの温度に対する変化率は,

$$\frac{\partial F_{k+\frac{1}{2}}}{\partial T_s} = \frac{\partial \pi B_s}{\partial T_s} \mathcal{T}_{k+\frac{1}{2},\frac{1}{2}}$$
(6.36)

$$\frac{\partial F_{k+\frac{1}{2}}}{\partial T_{k'}} = -\frac{\partial \pi B_{k'}}{\partial T_{k'}} \left(\mathcal{T}_{k+\frac{1}{2},k'-\frac{1}{2}} - \mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} \right)$$
(6.37)

となる. これらにより, 放射フラックスは,

$$F_{k+\frac{1}{2}}^{n+1} = F_{k+\frac{1}{2}}^{n-1} + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_s} \Delta T_s + \sum_{k'=1}^{k_{max}} \frac{\partial F_{k+\frac{1}{2}}}{\partial T_{k'}} \Delta T_{k'}$$
(6.38)

$$\Delta T_s = T_s^{n+1} - T_s^{n-1} \tag{6.39}$$

$$\Delta T_k = T_k^{n+1} - T_k^{n-1} \tag{6.40}$$

として求められる.ただし, 上記の式ではすべての層について和をとっているが, 実際は最下層の寄与のみ考慮し,

$$F_{k+\frac{1}{2}}^{n+1} = F_{k+\frac{1}{2}}^{n-1} + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_s} \Delta T_s + \frac{\partial F_{k+\frac{1}{2}}}{\partial T_1} \Delta T_1$$
(6.41)

とするのが現実的である2.

6.3.3 射出のない場合の散乱を考慮した放射伝達方程式

不均質大気に適応するためには、大気が、多数の均質の大気層からなると考える. この時、n層目の均質大気層に対する一般化された二方向近似した放射伝達方程式 の解は下のように書くことができる.

$$F_n^+(\tau) = k_{1,n} \exp(\lambda_n \tau) + \Gamma_n k_{2,n} \exp(-\lambda_n \tau) + C_n^+(\tau)$$
 (6.42)

$$F_{n}^{-}(\tau) = \Gamma_{n}k_{1,n}\exp(\lambda_{n}\tau) + k_{2,n}\exp(-\lambda_{n}\tau) + C_{n}^{-}(\tau)$$
(6.43)

$$C_{n}^{+}(\tau) = \frac{\omega_{0,n}\pi F_{s} \exp\left(-\frac{\tau_{c}+\tau}{\mu_{0}}\right) \left\{\frac{\gamma_{1,n}-\frac{1}{\mu_{0}}}{\gamma_{3,n}}+\gamma_{4,n}\gamma_{2,n}\right\}}{\lambda_{n}^{2}-\frac{1}{\mu_{0}^{2}}}$$
(6.44)

$$C_{n}^{-}(\tau) = \frac{\omega_{0,n}\pi F_{s} \exp\left(-\frac{\tau_{c}+\tau}{\mu_{0}}\right) \left\{\frac{\gamma_{1,n}+\frac{1}{\mu_{0}}}{\gamma_{4,n}}+\gamma_{2,n}\gamma_{3,n}\right\}}{\lambda_{n}^{2}-\frac{1}{\mu_{0}^{2}}}$$
(6.45)

ただし, τ は, n 層目の上端から測った光学的厚さであり, τ_c は n 層目よりも上空 の光学的厚さである.

to be written...

6.4 数理表現: AGCM5 放射モデル

ここでは, 地球流体電脳倶楽部 AGCM5 で標準として用いられていた放射モデル について述べる. このモデルは, Numaguti (1992) の放射モデルを基にして, 実装 方法を一部変更したものである³.

²放射過程, 鉛直拡散過程, 惑星表面熱収支, 土壌中の熱収支の式をまとめて整理したものを三重 対角行列にするためである.

³ここで述べる放射モデルと Numaguti (1992)の放射モデルの差は,放射伝達方程式の積分を 部分積分しているかどうかの違いである.したがって,連続系では両者は等しい.離散化した時点 で差が出るはずである.どちらの方法の方が良いのかはよく分からない.

^{2014/07/03(}地球流体電脳俱楽部) radiation/radiation.tex(radiation/radiation-agcm5-math.tex)

この放射モデルでは,長波では散乱を無視し,短波では,散乱の効果を非常に簡単に考慮して,実質吸収のみ扱う.

長波で扱う放射伝達方程式は, … に示した散乱を無視したものである. そこで以下では, 長波の計算に用いる透過率, および短波の放射伝達方程式を示す.

6.4.1 長波放射

本モデルにおいては, 吸収物質として水蒸気とそれ以外の気体を考える. 全波長域 を1バンドとし, k 分布法を念頭に, 吸収係数がバンド内で分布を持つ場合を考え る⁴.

このとき, $\pi B(\tau)$ は

$$\pi B(\tau) = \sigma_{SB} T^4(\tau) \tag{6.46}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{6.47}$$

と書くことができ、透過率は下のように書くことができる.

$$\mathcal{T}(\tau, \tau') = \mathcal{T}(\tau(p), \tau(p')) = \int_{0}^{1} \exp[-\alpha \{ |\tau_{L,wv}(p,g) - \tau_{L,wv}(p',g)| + |\tau_{L,da}(p,g) - \tau_{L,da}(p',g)| \}] dg \qquad (6.48)$$

$$\tau_{L,wv}(p,g) = k_{L,wv} \int_{z(p)}^{\infty} \rho q_{wv} dz'$$
(6.49)

$$= k_{L,wv} \frac{1}{g} \int_{0}^{p} q_{wv} dp'$$
 (6.50)

$$\tau_{L,da}(p,g) = k_{L,da} \int_{z(p)}^{\infty} \rho dz'$$
(6.51)

$$= k_{L,da} \frac{p}{g} \tag{6.52}$$

ここで, σ_{SB} はステファン・ボルツマン定数であり, α は散光因子である. $k_{L,wv}$, $k_{L,da}$ はそれぞれ長波放射における水蒸気とそれ以外の気体の吸収係数である. g は積算確率関数 (のようなもの) である.

⁴この考え方がよくある k 分布法の考え方と整合的かどうか良くわからない.しかし, Numaguti (1992)の定式化に物理的意味を付けるとすると,このようになると思われる.

radiation/radiation.tex(radiation/radiation-agcm5-math.tex) 2014/07/03(地球流体電脳倶楽部)

6.4.2 短波放射

本モデルにおいては,非常に簡単に散乱の効果を考慮するが,実質的に吸収のみ行 う大気の放射伝達方程式を解く.

吸収物質としては水蒸気とそれ以外の気体を考える. 全波長域を 1 バンドとし, k 分布法を念頭に, 吸収係数がバンド内で分布を持つ場合を考える⁵. 散乱過程の効 果は, 大気アルベド *A_a* というパラメータを導入し, 大気の上端においてその割合 の放射エネルギーが反射すると考えることによって考慮する.

このとき, 放射伝達方程式は下のように書くことができる.

$$F_{S}(\tau) = -(1 - A_{a})F_{0}(\chi)\mathcal{T}_{dir}(\tau, \chi) + (1 - A_{a})F_{0}(\chi)A_{s}\mathcal{T}_{dif}(\tau, \chi)$$
(6.53)
$$\mathcal{T}_{dir}(\tau, \chi) = \mathcal{T}_{dir}(\tau(p), \chi)$$
$$= \int_{-1}^{1} \exp[-\sec\chi\{\tau_{a}, (n, q) + \tau_{a}, (n, q)\}]dq$$
(6.54)

$$= \int_{0}^{1} \exp[-\sec\chi\{\tau_{S,wv}(p,g) + \tau_{S,da}(p,g)\}]dg$$

$$(0.54)$$

$$\mathcal{T}_{dif}(\tau,\chi) = \mathcal{T}_{dif}(\tau(p),\chi)$$

$$= \int_{0}^{1} \exp[-\sec\chi\{\tau_{S,wv}(p_{s},g) + \tau_{S,da}(p_{s}g)\}]$$

$$\cdot \exp[-\alpha\{|\tau_{S,wv}(p_{s},g) - \tau_{S,wv}(p,g)|$$

$$+|\tau_{S,da}(p_s,g) - \tau_{S,da}(p,g)|\}]dg$$
(6.55)

$$\tau_{S,wv}(p,g) = k_{S,wv} \int_{z(p)}^{\infty} \rho q_{wv} dz'$$
(6.56)

$$= k_{S,wv} \frac{1}{g} \int_{0}^{p} q_{wv} dp'$$
(6.57)

$$\tau_{S,da}(p,g) = k_{S,da} \int_{z(p)}^{\infty} \rho dz'$$
(6.58)

$$= k_{S,da} \frac{p}{g} \tag{6.59}$$

ここで, χ は太陽の天頂角⁶ (Liou, 2002 によれば solar zenith angle) であり, α は 散光因子である. $k_{S,wv}$, $k_{S,da}$ はそれぞれ短波放射における水蒸気とそれ以外の気 体の吸収係数である. また, A_s は惑星表面アルベドである. $F_0(\chi)$ は, 天頂角 χ に おける大気上端での恒星の放射フラックスである.

⁵この考え方は長波放射と同様である.

⁶天頂角を表す数学記号は文献によってまちまちである. 会田 (1982) では θ , Liou (2002) では θ_0 , Peixot and Oort (1992) では Z, Hartmann (1994) では θ_s が使われている.

^{2014/07/03(}地球流体電脳俱楽部) radiation/radiation.tex(radiation/radiation-agcm5-disc.tex)

6.5 離散表現: AGCM5 放射モデル

6.5.1 長波放射

長波における $\pi B(\tau)$ と透過率は下のように離散化される.

$$\pi B_k = \sigma_{SB} T_k^4 \tag{6.60}$$

$$\pi B_s = \sigma_{SB} T_s^4 \tag{6.61}$$

$$\mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} = \sum_{l=1}^{r} \Delta g_{L,l} \exp(-\alpha(|\tau_{L,wv,k+\frac{1}{2},l} - \tau_{L,wv,k'+\frac{1}{2},l}| + |\tau_{L,da,k+\frac{1}{2},l} - \tau_{L,da,k'+\frac{1}{2},l}|))$$
(6.62)

$$\tau_{L,wv,k-\frac{1}{2},l} = k_{L,wv,l} M_{wv,k-\frac{1}{2}}$$
(6.63)

$$\tau_{L,da,k-\frac{1}{2},l} = k_{L,da,l} M_{da,k-\frac{1}{2}}$$
(6.64)

$$M_{wv,k-\frac{1}{2}} = \sum_{k'=k}^{k_{max}} q_{wv,k'} \frac{p_{k'-\frac{1}{2}} - p_{k'+\frac{1}{2}}}{g}$$
(6.65)

$$M_{da,k-\frac{1}{2}} = \frac{p_{k-\frac{1}{2}}}{g} \tag{6.66}$$

$$\mathcal{T}_{k+\frac{1}{2},k'+\frac{1}{2}} = \sum_{l=1}^{l_{max,S}} \Delta g_{L,l} \exp(-\alpha (k_{L,wv,l} | M_{wv,k+\frac{1}{2}} - M_{wv,k'+\frac{1}{2}} | +k_{L,da,l} | M_{da,k+\frac{1}{2}} - M_{da,k'+\frac{1}{2}} |))$$
(6.67)

$$M_{wv,k-\frac{1}{2}} = \sum_{k'=k}^{k_{max}} q_{wv,k'} \frac{p_{k'-\frac{1}{2}} - p_{k'+\frac{1}{2}}}{g}$$
(6.68)

$$M_{da,k-\frac{1}{2}} = \frac{p_{k-\frac{1}{2}}}{g} \tag{6.69}$$

ここで, $l_{max,L}$ は, 長波放射における, 積算確率関数に対する積分の分点の数 (領域の数) であり, $\Delta g_{L,l}$ は積算確率関数の l 番目の領域の幅である.

6.5.2 短波放射

短波放射フラックスは下のように離散化される.

$$F_{k+\frac{1}{2}} = -(1-A_a)F_0(\chi)\mathcal{T}_{dir,k+\frac{1}{2}}(\chi) + (1-A_a)F_0(\chi)A_s\mathcal{T}_{dif,k+\frac{1}{2}}(\chi)$$
(6.70)

$$\mathcal{T}_{dir,k+\frac{1}{2}}(\chi) = \sum_{l=1}^{l_{max,S}} \exp\left[-\sec\chi\{\tau_{S,wv,k+\frac{1}{2},l} + \tau_{S,da,k+\frac{1}{2},l}\}\right] \Delta g_{S,l}$$
(6.71)

$$\mathcal{T}_{dif,k+\frac{1}{2}}(\chi) = \sum_{l=1}^{l_{max,S}} \exp\left[-\sec\chi\{\tau_{S,wv,\frac{1}{2},l} + \tau_{S,da,\frac{1}{2},l}\}\right] \\ \cdot \exp\left[-\alpha\{\tau_{S,wv,\frac{1}{2},l} - \tau_{S,wv,k+\frac{1}{2},l} + \tau_{S,da,\frac{1}{2},l} - \tau_{S,da,k+\frac{1}{2},l}\}\right] \Delta g_{S,l} \quad (6.72)$$

$$\tau_{S,wv,k-\frac{1}{2},l} = k_{S,wv,l} M_{wv,k-\frac{1}{2}}$$
(6.73)

$$\tau_{S,da,k-\frac{1}{2},l} = k_{S,da,l} M_{da,k-\frac{1}{2}} \tag{6.74}$$

6.6 大気上端での恒星の放射フラックス

惑星上の 1 点における大気上端での恒星の放射フラックス $F_0(\chi)$ は

$$F_0(\chi) = \begin{cases} F_{00} \left(\frac{1}{r_s}\right)^2 \cos \chi & (\cos \chi > 0) \\ 0 & (\cos \chi \le 0) \end{cases}$$

$$(6.75)$$

と書くことができる. F_{00} は軌道長半径における恒星の放射フラックスであり,太陽定数に相当する⁷. r_S は惑星の軌道長半径で規格化した恒星-惑星間距離である. χ は考えている地点における恒星の天頂角である.

 $\cos \chi \, l t$,

$$\cos\chi = \cos\phi\cos\delta_S\cos H + \sin\phi\sin\delta_S \tag{6.76}$$

$$a\left(1+\frac{1}{2}e^2\right)$$

となる. (a は軌道長半径, e は離心率). $e \ll 1$ であれば平均距離は a とほぼ等しい.

⁷太陽定数のより正確な定義は恒星-惑星間の平均距離における恒星の放射フラックスである.ケ プラー運動する惑星の恒星からの平均距離は

41

Figure 2.5 The earth-sun geometry. *P* denotes the perihelion, *A* the aphelion, *AE* the autumnal equinox, *VE* the vernal equinox, *WS* the winter solstice, and *SS* the summer solstice, **n** is normal to the ecliptic plane, **a** is parallel to the earth's axis, δ is the declination of the sun, ϵ the oblique angle of the earth's axis, ω the longitude of the perihelion relative to the vernal equinox, *v* the true anomaly of the earth at a given time, λ the true longitude of the earth, *O* the center of the ellipse, *OA* (or *OP* = *a*) the semiminior axis, *S* the position of the sun, *E* the position of the earth, and *ES* (= *r*) the distance between the earth and the sun.

図 6.1: 惑星恒星系における各種角度の関係. 原図は Liou (2002) の Figure 2.5. い ずれ自分で書きかえないといけないだろう. 図中の δ が δ_S に, ν が Φ に対応する.

と表わされる. ここで, ϕ は緯度, δ_S は恒星の傾斜角 (惑星の赤道面から測った太陽の角度である. Liou, 2002 によれば declination of the sun. 天球上における恒星の赤緯とも等しい) である. *H* は時角 (hour angle) であり, 考える点の現在の位置と正午になる時の位置との経度の差 (もしくは恒星直下点の経度を基準にした経度) である. (6.76) は球面三角関数の公式を使えば導くことができる (Liou, 2002 の 2.2 節および Appendix C 参照). 各種の角度の関係を 図 6.1 と図 6.2 に示しておく. なお, dcpam の放射計算においては, $\cos \chi$ よりも $\sec \chi$ の形の方が便利であるので, 変数としては $\sec \chi$ の値を格納したものを用意している.

r_s は惑星の軌道要素から次のように計算される (ランダウ・リフシッツ「力学」 §15 参照).

$$r_S = (1 - e\cos\xi) \tag{6.77}$$

ここで, e は離心率である. ξ は離心近点角 (または離心近点離角, eccentric anomaly)

Figure 2.6 Relationship of the solar zenith angle θ_0 to the latitude φ , the solar inclination angle δ , and the hour angle h. P and D are the point of observation and the point directly under the sun, respectively (see text for further explanation).

図 6.2: 天頂角・緯度・恒星の傾斜角・時角の関係. 原図は Liou (2002) の Figure 2.6. いずれ自分で書きかえないといけないだろう. 図中の θ_0 が χ に, δ が δ_S に対応する.

であり,楕円上の位置を与えるパラメータであり8,ケプラーの方程式

$$\xi - e\sin\xi = l \tag{6.78}$$

を解くことによって求められる.ここで *l* は平均近点角 (mean anomaly) であり, 惑星軌道を円で近似して, 軌道中心を原点として近日点の方向から測った惑星の位 置までの角度である.時刻を *t*, 公転周期を *T*_{orb} とすると

$$l = \frac{2\pi(t - t_0)}{T_{orb}} + (\Phi_{Epoch} - \Phi_0)\frac{\pi}{180}$$
(6.79)

となる. t_0 は元期 (げんき, 天体位置計算の基準となる時刻. 天体観測では軌道要 素が観測された日を元期とする)を示す時刻である. Φ_{Epoch} は元期における惑星の 平均近点角 (単位は degree, 元期における太陽の黄経に π を足したもの), Φ_0 は近 日点黄経である. dcpam では, 各時刻における *l* を求めた後に Newton 法によって (6.78) を ξ について解いている.

 δ_S は以下の式で計算される.

$$\sin \delta_S = -\sin \theta_p \sin(\Phi_0 + \Phi) \tag{6.80}$$

 θ_p は赤道傾斜角 (天体の軌道面と赤道面のなす角. Liou, 2002 によれば oblique angle of the earth's axis. 自転軸と公転軸のなす角にも等しい). Φ は真近点角 (true anomaly) であり, 恒星を原点として, 近日点から測る惑星の軌道上の位置を表す 角度である. Φ は以下の式から決定される

$$\tan\frac{\Phi}{2} = \sqrt{\frac{1+e}{1-e}}\tan\frac{\xi}{2} \tag{6.81}$$

 Φ_0 は近日点黄経であり,春分点の方向と近日点のなす角である. $\Phi_0 + \Phi$ は恒星を 原点として,春分点の方向から惑星の位置まで測った角度となっている.

時角 H は以下の式で決定する.

$$H = 2\pi t_{BuDay} - \pi + \lambda \tag{6.82}$$

⁸楕円の中心を原点に,近日点の方向を x軸にとった時に楕円上の点 (x, y) と離心近点角 ξ との関係は以下のようになる.

$$x = a(\cos \xi - e),$$

$$y = a\sqrt{1 - e^2}\sin \xi,$$

ただし, a は軌道長半径, e は離心率である.

 t_{ByDay} は時刻を日単位で表現したものである ($t_{ByDay} = 0$ が深夜 0 時に, $t_{ByDay} = 0.5$ が正午に対応する). 日の出と日の入りの時の時角 H_0 は

$$\cos H_0 = -\tan\phi\tan\delta_S \tag{6.83}$$

となる.

以下では,現在 dcpam に実装されている日射分布の計算方法に関する記述を行う.

1. 年変化 (季節変化)を日変化する場合.

この場合には、上記の(6.75),(6.76),(6.77),(6.80)を用いて緯度・経度,時間 を与えた場合の大気上端における恒星からの放射フラックス分布を計算する. dcpam5のデフォルトのパラメータ設定を使って計算した大気上端における 日平均日射量の時間-緯度分布を図6.3に,現実の惑星にあわせたパラメータ 設定を使って計算した日平均日射量の時間-緯度分布を図6.4に示す.現実の 地球の場合の結果(図6.4b)は,Liou(2002)のFigure2.8で示された結果と 同じパターンになっている.

2. 年平均・日平均日射分布を用いる場合

dcpam5 においては, 年平均入射量および年平均入射角は, 以下の近似式を用いて計算している.

$$\overline{F_S^I}(\varphi) \simeq -S_0(A_{ins} + B_{ins}\cos^2\varphi), \qquad (6.84)$$

$$\overline{\cos \chi} \simeq A_{\chi} + B_{\chi} \cos^2 \varphi. \tag{6.85}$$

なお, 短波放射の放射伝達方程式で必要となる sec ζ は

$$\overline{\sec \chi} = \frac{1}{A_{\chi} + B_{\chi} \cos^2 \varphi} \tag{6.86}$$

として計算する.

 $A_{ins}, B_{ins}, A_{\chi}, B_{\chi}$ の値を表 6.1 に示す. これらの値は AGCM5 で使用され ていたものであり, どのように決定されたのかについては正確なところは確 認されていない. しかし, (6.75) によって入射放射量を計算し日平均・年平 均した結果を用いて, 最小二乗法で (6.84) へのフィッティングを行うと表 6.1 に示した A_{ins} および B_{ins} の値とほぼ等しい数値が得られる (T42 で計算し た場合 $A_{ins} = 0.12756, B_{ins} = 0.18340$ となる). A_{χ}, B_{χ} については, (6.75) の時間平均を取ったものが (6.84) であると考えれば A_{ins}, B_{ins} をそれぞれ定 数倍したものが A_{χ}, B_{χ} になるはずである. 赤道での $\overline{\cos \chi}$ の値が 1 になる

図 6.3: dcpam の入射太陽放射ルーチンを用いて計算される大気上端における日 平均太陽放射の時間-緯度分布. 横軸は1年の開始日からの日数, 縦軸は緯度. 大気 上端における太陽放射分布を1時間ごとに計算し,日平均をとった値を示してい る. dcpam5 の大気上端での恒星の放射フラックスを与えるサブルーチンを用いて 計算した. 水平解像度は T21. $F_{00} = 1380 \text{ W/m}^{-2}$, $\theta_p = 23.5^\circ$, $\Phi_0 = 0.0$, $\epsilon = 0.0$, 元期における惑星の黄経は 280.0 とした場合. 1 年の長さは 365 日.

図 6.4: 現実の惑星の大気上端における日平均太陽放射の時間-緯度分布. 横軸は1 年の開始日からの日数,縦軸は緯度.大気上端における太陽放射分布を1時間ご とに計算し、日平均をとった値を示している. dcpam5 の大気上端での恒星の放射 フラックスを与えるサブルーチンを用いて計算した.水平解像度は T21. (a) 現実 の地球を模したパラメータ設定を用いた場合. $F_{00} = 1369 \text{ W/m}^{-2}, \theta_p = 23.44^\circ,$ $\Phi_0 = 102.768413 + 180.0, \epsilon = 0.016713$, 元期における惑星の黄経は 99.403308 + 180.0.1 年の長さは 365 日.(b) 現実の火星を模したパラメータ設定を用いた場 合. $F_{00} = 588.98 \text{ W/m}^{-2}, \theta_p = 25.19^{\circ}, \Phi_0 = 258.98, \epsilon = 0.0934,$ 元期における惑 星の黄経は -10.342.1 年の長さは 669 日.

$$\begin{vmatrix} A_{ins} & B_{ins} & A_{\chi} & B_{\chi} \\ 0.127 & 0.183 & 0.410 & 0.590 \end{vmatrix}$$

表 6.1: 現実の地球を想定した場合の
$$A_{ins}, B_{ins}, A_{\chi}, B_{\chi}$$
 の値

ように定数を決めると表 6.1 の A_{χ} および B_{χ} と等しい値が得られる (T42 の計算で得られた $A_{ins} = 0.12756, B_{ins} = 0.18340$ を用いると $A_{\chi} = 0.41021, B_{\chi} = 0.58979$ となる).

ちなみに,日平均日射分布・年平均日射分布に関する正確な表式は以下の通りである.これらの式に基づき年平均・日平均日射分布の表式を構成できる はずであるがやっていない.

• 日平均日射分布の正確な表式

Liou (2002) によれば、日平均放射量 F_d は次のように計算される.

$$\overline{F_{day}}(\phi) = F_{00} \left(\frac{1}{r_S}\right)^2 \frac{S(r)}{\pi} \times (\cos\phi\sin h_0\cos\delta_S + h_0\sin\phi\sin\delta_S). \quad (6.87)$$

ここで, $\delta \geq S(r)$ の 1 日の間での変化量は小さいとする近似を用いている.

日平均・年平均日射分布の正確な表式
 Liou (2002) によれば、日平均・年平均日射分布は

$$\overline{F_y}(\phi) = \frac{F_{00}T_{orb}\tilde{S}(\phi,\epsilon)}{\pi(1-e^2)^{1/2}},$$
(6.88)

$$\tilde{S}(\phi,\epsilon) \equiv \frac{\sin\phi\sin\epsilon}{2\pi} \int_0^{2\pi} (h_0 - \tan h_0) \sin\lambda d\lambda \qquad (6.89)$$

で与えられる.

参考として, North (1975) で用いられている式も挙げておく. North (1975) では, 大気上端における恒星の放射フラックスの年平均・日平均分布を

$$F_0(x) = \frac{F_{00}}{4} \{1 + S_2 P_2(x)\}, \qquad (6.90)$$

$$S_2 = -0.482 \tag{6.91}$$

として, エネルギーバランスモデルによる計算を行っている. ここで $x = \sin \phi$ である. S_2 の値は, Chýlek and Coakley (1975) の地球における長波放射の 吸収量の観測値に基づき決定したものである (当時はまだ短波放射に関する 衛星観測が無かったのだと思われる). これから, A_{ins} , B_{ins} に対応する量を 計算すると

$$A_{ins} = 0.1295,$$
 (6.92)

$$B_{ins} = 0.1808 \tag{6.93}$$

となる.

3. 特定の日の日射分布を用いる (perpetual run).

この場合には, $\sin \delta_S$ と r_S に定数値を与えて (6.75), (6.76) を用いて, 大気上 端における恒星からの放射フラックス分布を計算する.

4. 昼半球・夜半球固定の日射分布 (同期回転惑星設定) この場合には、太陽直下点の経度 $\lambda_{subsolar}$ と経度 $\phi_{subsolar}$ を与える. $\phi_{subsolar} =$

0の場合を考えて, 天頂角を

$$\cos \chi = \cos \phi \cos(\lambda - \lambda_{subsolar}) \tag{6.94}$$

とする.これにより、恒星からの放射フラックス分布を

$$F_0(\phi) = F_{00} \cos \chi \tag{6.95}$$

で決定する.

6.7 放射計算で用いるパラメータ

放射計算で指定するべきパラメータの主なもの (いずれ網羅する予定) を以下に挙 げる.

短波に対する大気アルベド: dcpam5 のソースコードに記述されている値は
 0.2.

現実の地球の場合では, 短波に対する大気アルベドは 0.225 である. Kiehl and Trenberth (1997) による地球全体の熱収支の見積りでは, 全球平均放射 量 342 W/m² のうち, 77 W/m² が大気により反射される.

- 軌道の離心率: dcpam5 のソースコードに記述されている値は 0.0.
 現実の地球の場合, 軌道離心率は 0.0167 (理科年表による).
 現実の火星の場合, 軌道離心率は 0.0934 (Allison, 1997).
- 近日点黄経: dcpam5 のソースコードに記述されている値は 0.0.
 現実の地球の場合,近日点黄経は 102.924°(理科年表による)⁹ dcpam で使用する場合には 102.768413 + 180.0 を与える.
 現実の火星の場合,近日点黄経は 250.98° (Allison, 1997).

⁹Duffett-Smith (1988) も確認するべし.

太陽定数: dcpam5 のデフォルト値は 1380 W/m². この値は Ishiwatari et al. (2002) による. 以下に述べるように現実の地球の太陽定数よりもやや大きい¹⁰

現実の地球の場合,太陽定数は 1367 W/m² である (Hartmann, 1994). 太陽 が単位時間に発する放射エネルギー L_0 として 3.85×10^{26} W (理科年表),太 陽地球間の平均距離 \overline{r}_S として 1 天文単位 (1.496×10^{11} m; 理科年表, 1995) を用いると,太陽定数は

$$\frac{L_0}{4\pi\bar{r}_S^2} = \frac{3.85 \times 10^{26}}{4 \times 3.142 \times (1.496 \times 10^{11})^2} = 1368.8 \text{W/m}^2 \tag{6.96}$$

と計算される.

現実の火星の場合,太陽定数は 588.98 W/m² (Kieffer et al., 1992)

6.8 参考文献

- Allison, M., 1997: Accurate analytic representations of solar time and seasons on Mars with applications to the Pathfinder/Surveyor missions. *Geophys. Res. Lett.*, 23, 1967-1970.
- Chýlek, P., Coakley, J. A. 1975: Analytical analysis of a Budyko-type climate model. J. Atmos. Sci., 32, 675–679
- Hartmann, D. L., 1994: Global physical climatology. Academic Press, pp411.
- Kieffer, H. H., Jakosky, B. M., Snyder, C. W., 1992: The planet Mars: from antiquity to the present. Mars edited by Kieffer, H; H., Jakosky, B. M., Snyder, C. W., Matthews, M. S., The University of Arizona Press, 1–33.
- Kiehl, J. T., Trenberth, K. E., 1997: Earth's annual global mean energy bugdet. Bull. Am. Meteorol. Soc., 78, 197–208.
- Liou, K. N., 2002: An introduction to atmospheric radiation 2nd edition. Academic Press, pp583.
- North, G. R., 1975: Theory of energy-balance climate models. J. Atmos. Sci., **32**, 2033–2043.

¹⁰デフォルト値も 1370 W/m² にした方が良いかも.

radiation/radiation.tex(radiation/radiation-references.tex) 2014/07/03(地球流体電脳倶楽部)

- Toon, O. B., C. P. McKay, and T. P. Ackerman, 1989: Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94, 16287–16301.
- エリ・デ・ランダウ, イエ・エム・リフシッツ著, 広重 徹, 水戸 巌訳, 1974: 力学. 東京図書, pp214.
- 木下 宙著, 広重 徹, 水戸 巌訳, 1998: 天体と軌道の力学東京大学出版会, pp259.
- Numaguti, A., 1982: 熱帯における積雲活動の大規模構造に関する数値実験, 東京 大学博士論文.

国立天文台編, 2010: 理科年表, 丸善株式会社.

第7章 積雲対流

7.1 はじめに

ほとんどの大気大循環モデルにおいては積雲を様に表現するだけの分解能を持た ないので, 雲の発生する条件並びに雲が大気大循環に与える影響については何らか の方法で評価せざるを得ない. この評価方法は一般に積雲パラメタリゼーションと 呼ばれる.

現在の dcpam5 では湿潤対流調節 (Manabe *et al.*, 1965) と Relaxed Arakawa-Schubert スキーム (Moorthi and Suarez, 1992) を実装してある. また, そもそも 大気が過飽和状態にあれば降水が起こる. これを非対流性凝結 (大規模凝結) とい う. これについては別紙『非対流性凝結 (大規模凝結)』を参照のこと.

7.2 湿潤対流調節

7.2.1 離散表現

ここでは, 湿潤対流調節 (e.g., Manabe et al., 1965)の定式化について解説する. な お, 乾燥対流調節の定式化は, 水蒸気がないという条件の下で, 湿潤対流調節の式 から容易に導出できるため, ここに示す式は乾燥対流調節の解説にもなっている.

対流調節では, 連続した 2 つの層において, 次の条件が満たされる場合に調節を 行う.

 下層と上層の湿潤静的エネルギーの差が閾値より大きい (下層の湿潤静的エネ ルギーが上層のそれよりも大きい (温度減率が湿潤断熱減率よりも大きい)), 1.

2. 相対湿度が閾値以上².

これらは、離散化した式で表現すると下のように表わされる.

$$C_p \hat{T}_k + Lq^*(\hat{T}_k) + g\hat{z}_k - \left(C_p \hat{T}_{k+1} + Lq^*(\hat{T}_{k+1}) + g\hat{z}_{k+1}\right) > C_p \Delta T_c, \quad (7.1)$$

$$\frac{q_k}{q^*(\hat{T}_k, p_k)} \ge r_c, \qquad (7.2)$$

$$\frac{q_{k+1}}{q^*(\hat{T}_{k+1}, p_{k+1})} \ge r_c \tag{7.3}$$

ここで、、な調節前の値を表す.また、 $C_p\Delta T_c$ は不安定が起こる湿潤静的エネルギー 差の閾値であり、 r_c は凝結が生じる相対湿度の閾値である.

調節時に満たす条件は,

$$\left\{ C_p \hat{T}_k + L \hat{q}_k \right\} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} + \left\{ C_p \hat{T}_{k+1} + L \hat{q}_{k+1} \right\} \frac{p_{k+\frac{1}{2}} - p_{k+\frac{3}{2}}}{g}$$

$$= \left\{ C_p T_k + L q_k \right\} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} + \left\{ C_p T_{k+1} + L q_{k+1} \right\} \frac{p_{k+\frac{1}{2}} - p_{k+\frac{3}{2}}}{g}$$

$$(7.4)$$

$$C_p T_k + Lq_k + gz_k = C_p T_{k+1} + Lq_{k+1} + gz_{k+1}$$
(7.5)

$$q_k = q^*(T_k, p_k) \tag{7.6}$$

$$q_{k+1} = q^*(T_{k+1}, p_{k+1}) \tag{7.7}$$

である.

ここで, (7.5) を静水圧平衡の式を用いて整理すると,

$$C_p(T_k - T_{k+1}) + L(q^*(T_k) - q^*(T_{k+1})) - \frac{RT_{k+\frac{1}{2}}}{p_{k+\frac{1}{2}}}(p_k - p_{k+1}) = 0$$
(7.8)

となる. したがって, ... のからなる連立一次方程式を解けば良い. なお, $T_{k+\frac{1}{2}}$ は

$$T_{k+\frac{1}{2}} = \frac{T_k + T_{k+1}}{2} \tag{7.9}$$

2014/07/03(地球流体電脳俱楽部) cumulus/cumulus.tex(cumulus/cumulus-adjust.tex.tex)

¹単純には、この閾値はゼロである.しかし、実際にはモデル格子間隔内で温度・湿度の分布があることが考えられ、格子の平均エネルギー差がゼロ以上であっても、格子内で混合が起こることが想像される.

²単純には、凝結が生じる相対湿度の閾値は1である.しかし、実際にはモデル格子間隔内で湿度の分布があることが考えられ、格子の平均相対湿度が1以下であっても、格子内で凝結が起こることが想像される.

と表現することにする. ここで, q_k , q_{k+1} をテイラー展開し, $q_k = q^*(T_k, p_k) = q^*(\hat{T}_k, p_k) + \frac{\partial q^*}{\partial T}\Big|_{T=\hat{T}_k} \Delta T_k$ (7.10) $q_{k+1} = q^*(T_{k+1}, p_{k+1}) = q^*(\hat{T}_{k+1}, p_{k+1}) + \frac{\partial q^*}{\partial T}\Big|_{T=\hat{T}_{k+1}} \Delta T_{k+1}$ (7.11) $\Delta T_k = T_k - \hat{T}_k$ (7.12) $\Delta T_{k+1} = T_{k+1} - \hat{T}_{k+1}$ (7.13)

として連立一次方程式を解くと、下の解が得られる.

$$\Delta T_{k} = \left\{ \Delta p_{k} \left(1 + \gamma_{k} \right) \right\}^{-1} \left\{ \frac{L}{C_{p}} \Delta Q - \Delta p_{k+1} \left(1 + \gamma_{k+1} \right) \Delta T_{k+1} \right\}$$
(7.14)

$$\Delta T_{k+1} = \left[F_{k+\frac{1}{2}} \left\{ \Delta p_k \left(1 + \gamma_k \right) - \Delta p_{k+1} \left(1 + \gamma_{k+1} \right) \right\} + \left(1 + \gamma_k \right) \left(1 + \gamma_{k+1} \right) \left(\Delta p_k + \Delta p_{k+1} \right) \right]^{-1} \\ \left[\Delta p_k \left(1 + \gamma_k \right) S_{k+\frac{1}{2}} + \left\{ 1 + \gamma_k - F_{k+\frac{1}{2}} \right\} \frac{L}{C_p} \Delta Q \right]$$
(7.15)

$$\Delta p_k = p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}} \tag{7.16}$$

$$F_{k+\frac{1}{2}} = \frac{R}{C_p} \frac{p_k - p_{k+1}}{2p_{k+\frac{1}{2}}}$$
(7.17)

$$S_{k+\frac{1}{2}} = \hat{T}_k - \hat{T}_{k+1} + \frac{L}{C_p} \left\{ q^*(\hat{T}_k, p_k) - q^*(\hat{T}_{k+1}, p_{k+1}) \right\} - F_{k+\frac{1}{2}} \left(\hat{T}_k + \hat{T}_{k+1} \right)$$
(7.18)

$$\Delta Q = \Delta p_k \left\{ \hat{q}_k - q^*(\hat{T}_k, p_k) \right\} + \Delta p_{k+1} \left\{ \hat{q}_{k+1} - q^*(\hat{T}_{k+1}, p_{k+1}) \right\}$$
(7.19)

$$\gamma_k = \left. \frac{L}{C_p} \left. \frac{\partial q^+}{\partial T} \right|_{T=\hat{T}_k} \tag{7.20}$$

実際には、上記の解は q_k , q_{k+1} をテイラー展開して求めた近似解でしかなく、正確 には … を満たしていない. さらに、上記の定式化は、k 番目の層と k+1 番目の層 の混合を表記しているだけであるが、実際には 3 層以上の層にわたる混合も起こ りえる. そこで、上記の調節を何度か繰り返し行うことで、徐々に調節していく.

なお,降水量は,

$$P = -\frac{1}{2\Delta t} \sum_{k=k_{max}}^{1} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} \Delta q_k$$

= $-\frac{1}{2\Delta t} \sum_{k=k_{max}}^{1} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} \{(q_k)_{l_{max}+1} - \hat{q}_k\}$ (7.21)

cumulus/cumulus.tex(cumulus/cumulus-ras.tex.tex)

である3.

7.3 Relaxed Arakawa-Schubert スキーム

Relaxed Arakawa-Schubert スキームについては, Moorthi and Suarez (1992) およ びその論文で参照している論文を参照すること.

7.4 参考文献

- Manabe, S., Smagorinsky, J., Strickler, R.F., 1965: Simulated climatology of a general circulation model with a hydrologic cycle, *Mon. Weather Rev.*, 93, 769–798.
- Moorthi, S., M. J. Suarez, 1992: Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models, *Mon. Wea. Rev.*, **120**, 978–1002.

³ここで, 鉛直方向の和は上層から下層に向けて和を取ることにしている. これは, 上層の方が凝結量が少ないためである.

^{2014/07/03(}地球流体電脳俱楽部) cumulus/cumulus.tex(cumulus/cumulus-references.tex.tex)

第8章 非対流性凝結 (大規模凝結)

8.1 離散表現

格子点の相対湿度が閾値を超えた場合, Manabe et al. (1965) に従い, 非対流性凝結 (以後, 大規模凝結と呼ぶ) が生じると考える¹. 凝結した水は速やかに降水と なって落下し, 雨水の蒸発は考えない.

大規模凝結は下の条件が成り立つときに生じる.

$$\frac{\hat{q}_k}{q^*(\hat{T}_k, p_k)} \ge r_c \tag{8.1}$$

ここで、[^]は調節前の値を表し、r_cは凝結が生じる相対湿度の閾値である.

大規模凝結時に満たす条件は,

$$C_p \hat{T}_k + L \hat{q}_k = C_p T_k + L q_k \tag{8.2}$$

$$q_k = q^*(T_k, p_k)$$
 (8.3)

である.

 q_k を、テイラー展開して一次の項までとると、

$$q_k = q^*(T_k, p_k) = q^*(\hat{T}_k, p_k) + \frac{\partial q^*}{\partial T} \Big|_{T = \hat{T}_k} \Delta T_k$$
(8.4)

¹単純には、凝結が生じる相対湿度の閾値は1である.しかし、実際にはモデル格子間隔内で湿度の分布があることが考えられ、格子の平均相対湿度が1以下であっても、格子内で凝結が起こることが想像される.

となることを用いて整理すると,

$$T_k = \hat{T}_k + \Delta T_k \tag{8.5}$$

$$= \hat{T}_k + \frac{L\left\{\hat{q}_k - q^*(T_k, p_k)\right\}}{C_p + L\left.\frac{\partial q^*}{\partial T}\right|_{T=\hat{T}_k}}$$

$$(8.6)$$

$$q_k = \hat{q}_k + \Delta q_k \tag{8.7}$$

$$= q^*(\hat{T}_k, p_k) + \frac{\partial q^*}{\partial T}\Big|_{T=\hat{T}_k} \Delta T_k$$
(8.8)

となる.

ただし,... で q_k をテイラー展開で近似しているため, 上記の結果は近似値である. したがって, 上記の計算を繰り返し行い, 繰り返しの回数を *l* とすると, 値を

$$(T_k)_{l+1} = (T_k)_l + \Delta T_k \tag{8.9}$$

$$(q_k)_{l+1} = (q_k)_l + \Delta q_k \tag{8.10}$$

のように更新しながらより正しい結果に近付ける.

なお、この時、降水量は、

$$P = -\frac{1}{2\Delta t} \sum_{k=k_{max}}^{1} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} \Delta q_k$$

= $-\frac{1}{2\Delta t} \sum_{k=k_{max}}^{1} \frac{p_{k-\frac{1}{2}} - p_{k+\frac{1}{2}}}{g} \{(q_k)_{l_{max}+1} - \hat{q}_k\}$ (8.11)

である2.

8.2 参考文献

Manabe, S., Smagorinsky, J., Strickler, R.F., 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Weather Rev., 93, 769–798.

²ここで, 鉛直方向の和は上層から下層に向けて和を取ることにしている. これは, 上層の方が凝結量が少ないためである.

第9章 乱流過程

9.1 数理表現

鉛直拡散による運動方程式,熱力学の式,成分の式における変化率は下のようにそ れぞれ下のように書くことができる.

$$\left(\frac{\partial u}{\partial t}\right)_{VD} = -\frac{1}{\rho} \frac{\partial F_{m,x}}{\partial z}$$
(9.1)

$$= g \frac{\partial F_{m,x}}{\partial p}, \tag{9.2}$$

$$\left(\frac{\partial v}{\partial t}\right)_{VD} = g \frac{\partial F_{m,y}}{\partial p}, \qquad (9.3)$$

$$\left(\frac{\partial T}{\partial t}\right)_{VD} = \frac{g}{C_p} \frac{\partial F_h}{\partial p}, \qquad (9.4)$$

$$\left(\frac{\partial q}{\partial t}\right)_{VD} = g\frac{\partial F_q}{\partial p}.$$
(9.5)

ここで, $F_{m,x}$, $F_{m,y}$, F_h , F_q はそれぞれ東西方向, 南北方向の運動量フラックス, 熱 フラックス, 水蒸気 (物質) のフラックスであり, 下のように表現される.

$$F_{m,x} = -\rho K_m \frac{\partial u}{\partial z}, \qquad (9.6)$$

$$F_{m,y} = -\rho K_m \frac{\partial v}{\partial z}, \qquad (9.7)$$

$$F_h = -C_p P \rho K_h \frac{\partial \theta}{\partial z}, \qquad (9.8)$$

$$F_q = -\rho K_q \frac{\partial q}{\partial z}.$$
(9.9)

ただし,

58

$$\theta = \frac{T}{P}, \tag{9.10}$$

$$P = \left(\frac{p_{00}}{p}\right)^n, \tag{9.11}$$

$$\kappa = \frac{R}{C_p} \tag{9.12}$$

である. 上部境界では

$$F_{m,x} = 0,$$
 (9.13)

$$F_{m,y} = 0,$$
 (9.14)

$$F_h = 0, \qquad (9.15)$$

$$F_q = 0 \tag{9.16}$$

とし、下部境界では、バルク法を用いてフラックスを評価する場合には、

$$F_{m,x} = -\rho C_d |\boldsymbol{v}| u, \qquad (9.17)$$

$$F_{m,y} = -\rho C_d |\boldsymbol{v}| v, \qquad (9.18)$$

$$F_h = -C_p P \rho C_h |\boldsymbol{v}| (\theta - \theta_s), \qquad (9.19)$$

$$F_q = -\epsilon \rho C_q |\boldsymbol{v}| (q - q_s^*)$$
(9.20)

とし, 摩擦の時定数 (運動量フラックスに対して) や一定値 (熱や物質フラックス に対して) を与える場合には,

$$F_{m,x} = -\frac{1}{\tau_f}u, \qquad (9.21)$$

$$F_{m,y} = -\frac{1}{\tau_f}v, \qquad (9.22)$$

$$F_h = F_{h,s}, (9.23)$$

$$F_q = F_{q,s} \tag{9.24}$$

とする. ただし, (9.20) に示した下部境界における物質のフラックス F_q は水蒸気 のフラックスである. ここで, p_{00} は基準圧力である. K_m , K_h , K_q はそれぞれ運動 量, 熱, 物質の拡散係数である. C_d , C_h , C_q はそれぞれ運動量, 熱, 水蒸気のバルク 係数である. また, τ_f は下部境界における摩擦の時定数, $F_{h,s}$, $F_{q,s}$ は固定する熱フ ラックス, 水蒸気フラックスである. ϵ は地表面の湿潤度である.

 K_m, K_h, K_q , はそれぞれ Mellor and Yamada (1982) レベル 2 の方法に従って評価する. これら拡散係数の具体的な評価方法については 第 9.1.1 節で述べる. C_d , C_h, C_q , はそれぞれ Louis et al. (1982) の方法に従って評価する. これらバルク係数の具体的な評価方法については第 9.1.2 節で述べる.

9.1.1 鉛直拡散係数

鉛直拡散係数, K_m , K_h , K_q , は Mellor and Yamada (1974, 1982) レベル 2 の方法 に従って評価する.

Mellor and Yamada (1974, 1982) の方法に従うと, 拡散係数は下のように表現される.

$$K_m = l^2 \left| \frac{\partial \boldsymbol{v}}{\partial z} \right| S_M, \qquad (9.25)$$

$$K_h = l^2 \left| \frac{\partial \boldsymbol{v}}{\partial z} \right| S_H, \qquad (9.26)$$

$$K_q = K_h. (9.27)$$

ここで, l は混合距離であり,

$$l = \frac{k(z - z_s)}{1 + k(z - z_s)/l_0}$$
(9.28)

の表式を用いる. ここで, z_s は地表面高度, l_0 は支配混合距離¹, k はカルマン定数 (Kármán's constant) である. また,

$$S_M = B_1^{\frac{1}{2}} (1 - R_f)^{\frac{1}{2}} \tilde{S}_M^{\frac{1}{2}} \tilde{S}_M, \qquad (9.29)$$

$$S_H = B_1^{\frac{1}{2}} \left(1 - R_f\right)^{\frac{1}{2}} \tilde{S}_M^{\frac{1}{2}} \tilde{S}_H$$
(9.30)

である. \tilde{S}_H, \tilde{S}_M は,

$$\tilde{S}_{H} = \begin{cases} \frac{\alpha_1 - \alpha_2 R_f}{1 - R_f} & (R_f < R_{f,critical}) \\ \tilde{S}_{H,min} & (R_f \ge R_{f,critical}) \end{cases},$$
(9.31)

$$\tilde{S}_{M} = \begin{cases} \frac{\beta_{1} - \beta_{2}R_{f}}{\beta_{3} - \beta_{4}R_{f}}\tilde{S}_{H} & (R_{f} < R_{f,critical})\\ \tilde{S}_{M,min} & (R_{f} \ge R_{f,critical}) \end{cases}$$

$$(9.32)$$

である². ここで, R_f はフラックスリチャードソン数 (flux Richardson number)

$$R_{f} = \frac{1}{2\beta_{2}} \left\{ \beta_{1} + \beta_{4}R_{i} - \sqrt{\left(\beta_{1} + \beta_{4}R_{i}\right)^{2} - 4\beta_{2}\beta_{3}R_{i}} \right\}$$
(9.33)

¹(2011-8-17 石渡) この用語は一般的か?

²(2011-8-26 石渡) オリジナルの Mellor and Yamada (1974) では臨界リチャードソン数を使った議論はなされていない. この場合分けに関しては, 離散化の部分で記述するべきかもしれない.

であり, R_i はバルクリチャードソン数 (bulk Richardson number)

$$R_{i} \equiv \frac{\frac{g}{\theta} \frac{\partial \theta}{\partial z}}{\left|\frac{\partial \boldsymbol{v}}{\partial z}\right|^{2}}$$
(9.34)

である. R_{f,critical} は臨界リチャードソン数であり,

$$R_{f,critical} = \frac{\gamma_1}{\gamma_1 + \gamma_2} \tag{9.35}$$

である.

60

また,

$$\alpha_1 = 3A_2\gamma_1, \tag{9.36}$$

$$\alpha_2 = 3A_2(\gamma_1 + \gamma_2), \qquad (9.37)$$

$$\beta_1 = A_1 B_1 (\gamma_1 - C_1), \qquad (9.38)$$

$$\beta_2 = A_1 \left[B_1 \left(\gamma_1 - C_1 \right) + 6A_1 + 3A_2 \right], \qquad (9.39)$$

$$\beta_3 = A_2 B_1 \gamma_1, \tag{9.40}$$

$$\beta_4 = A_2 [B_1 (\gamma_1 + \gamma_2) - 3A_1], \qquad (9.41)$$

$$\gamma_1 = \frac{1}{3} - \frac{2A_1}{B_1}, \tag{9.42}$$

$$\gamma_2 = \frac{B_2}{B_1} + \frac{6A_1}{B_1} \tag{9.43}$$

であり, $(A_1, B_1, A_2, B_2, C_1) = (0.92, 16.6, 0.74, 10.1, 0.08)$ である (Mellor and Yamada, 1982).

9.1.2 バルク係数

バルク係数は, Louis et al. (1982) の方法に従って評価する.

中立もしくは安定 $(R_i \ge 0)$ な場合

中立,もしくは安定 $R_i \ge 0$ な場合には,バルク係数は下のように評価する

³なお, 元論文 (Louis et al., 1982) では下のように表記されている.

³.

$$C_d = a^2 \frac{1}{1 + 10R_i \frac{1}{\sqrt{1+5R_i}}}, \qquad (9.47)$$

$$C_h = a^2 \frac{1}{1 + 15R_i\sqrt{1 + 5R_i}},$$
(9.48)

$$= \frac{k}{\log\left(\frac{z}{z_0}\right)}.\tag{9.49}$$

ここで, z は地面からの距離, k はカルマン定数, z_0 は粗度長である. なお, z が基準等ポテンシャル面 (地球の場合はジオイド) からの距離ではないことに注意.

不安定 $(R_i < 0)$ な場合

不安定 $R_i < 0$ な場合には、バルク係数は下のように評価する⁴.

a

$$C_d = a^2 \left(1 - \frac{10R_i}{1 + 75a^2 \sqrt{\frac{z}{z_0}|R_i|}} \right), \qquad (9.52)$$

$$C_h = a^2 \left(1 - \frac{15R_i}{1 + 75a^2 \sqrt{\frac{z}{z_0}|R_i|}} \right).$$
(9.53)

$$C_d = a^2 \frac{1}{1 + 2bR_i \frac{1}{\sqrt{1 + dR_i}}}$$
(9.44)

$$C_h = a^2 \frac{1}{1 + 3bR_i\sqrt{1 + dR_i}}$$
(9.45)

$$a = \frac{k}{\log\left(\frac{z+z_0}{z_0}\right)} \tag{9.46}$$

ここで, b = 5, d = 5 である. a の log の中の分子が $z + z_0$ となっている理由は不明である.

⁴なお, 元論文 (Louis et al., 1982) では下のように表記されている.

$$C_d = a^2 \left(1 - \frac{2bR_i}{1 + 3a^2 bc \sqrt{\frac{z+z_0}{z_0}} |R_i|} \right), \qquad (9.50)$$

$$C_h = a^2 \left(1 - \frac{3bR_i}{1 + 3a^2 bc \sqrt{\frac{z+z_0}{z_0} |R_i|}} \right).$$
(9.51)

ここで, b = 5, c = 5 である. a の log の中の分子が $z + z_0$ となっている理由は不明である.

9.1.3 乱流過程で用いられるパラメータの値

- 支配混合距離 l₀: dcpam の現在 (2010/02/20) のデフォルト値は l₀ = 300 m である.
- カルマン定数 k: dcpam のデフォルト値は k = 0.4.

カルマン定数の値は 1950 年代から 1980 年代までに行われたいくつかの観 測に基づいて決定されている (近藤, 1982). Businger et al (1971) はカンザ ス洲の麦畑における観測で 0.35 という値を得た. これにより, 0.35 という値 が広く使われたのだが, Businger et al (1971) では, 風速計付近に設置した観 測用電子機器を収めた箱の影響があることや三杯風速計の補正が十分ではな いことなどがわかった. その後, 近藤純正氏のグループが乾燥した水田で観 測を行い, 0.39 という値を得た (Kondo and Sato, 1982).

木田・柳瀬 (1999) には, Dean (1978) ⁵ が実験的にカルマン定数の値として 0.41 を得た, と記載されている.

粗度長 z₀

dcpam において陸面と海洋の差のみ考慮する場合には, 陸面では $z_0 = 0.1$ m, 海洋上では $z_0 = 10^{-4}$ m というデフォルト値が設定されている.⁶

粗度長は地表面の状態によって変化する. Sheppard (1947) は屋外観測によっ てに各種の表面における粗度長を決定した. そこでは, 滑らかな表面上 (氷 や滑らかな雪など) において $z_0 = 9 \times 10^{-6}$ m, 成長した根菜類が存在する 地面において $z_0 = 0.139$ m という数値が示されている (Shpeppard, 1947 の Table 2). Sheppard (1947) が決定した粗度長の値は Sutton (1953) ⁷ および 島貫 (1982) ⁸ にも引用されている.

⁵Dean, R. B., 1978: Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow *J. Fluids Eng.*, **100**, 215–213.

⁶dcpam5 において熱帯雨林など地表面状態を細かく分類して, それに応じて粗度長の値を変え て試した時には走らなかった. なので, 現状では, 陸面用と海洋用の 2 種の値のみを与えるように している (高橋との private communication による).

⁷Sutton, O.G., 1953: Micrometeorology. McGrawHill. 333pp.

⁸島貫 陸, 1982: 乱流と気象 -変動とうずの種々相- (気象学のプロムナード 6), 東京堂出版.

9.2 離散表現

dcpam では, 鉛直拡散は陰解法を用いて計算する. 運動量, 熱の鉛直拡散方程式は 下のように離散化する.

$$\frac{u_k^{t+\Delta t} - u_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{m,x,k+\frac{1}{2}}^{t+\Delta t} - F_{m,x,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}},$$
(9.54)

$$\frac{v_k^{t+\Delta t} - v_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{m,y,k+\frac{1}{2}}^{t+\Delta t} - F_{m,y,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}},$$
(9.55)

$$\frac{T_k^{t+\Delta t} - T_k^{t-\Delta t}}{2\Delta t} = \frac{1}{C_p} g \frac{F_{h,k+\frac{1}{2}}^{t+\Delta t} - F_{h,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}.$$
(9.56)

一方, 水蒸気の鉛直拡散に関しては, 最下層以外 $(k \ge 2)$ では下のように離散化される.

$$\frac{q_k^{t+\Delta t} - q_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{q,k+\frac{1}{2}}^{t+\Delta t} - F_{q,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}.$$
(9.57)

一方,最下層 (k = 1) においては,陰解法を用いて計算する場合の効率性を考慮し, 2 つの離散化方法を用意している. 1 つは,

$$\frac{q_k^{t+\Delta t} - q_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{q,k+\frac{1}{2}}^{t+\Delta t} - F_{q,k-\frac{1}{2}}^{t+\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}} \quad (k=1)$$
(9.58)

であり,1つは,

$$\frac{q_k^{t+\Delta t} - q_k^{t-\Delta t}}{2\Delta t} = g \frac{F_{q,k+\frac{1}{2}}^{t+\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t}}{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}} \quad (k=1)$$
(9.59)

である. 前者の場合, 最下層の離散化方法は最下層以外の層 $(k \ge 2)$ と同じように離散化される. 後者の場合, 惑星表面のフラックスのみ $t - \Delta t$ の時刻の値が使われる⁹. なお, 水蒸気以外の熱収支に関わらない物質の鉛直拡散は, (9.59) と同様に離散化する.

vdiff/vdiff.tex(vdiff/vdiff-disc.tex)

⁹後者の方法を利用しなければいけないのは, 陰解法で離散化した結果を整理して得られる連立 一次方程式の行列を三重対角行列にするため, そして, 有限の土壌水分を扱うためである.

地表面における上向き熱フラックスは、大気側から見れば、下部境界において大気に入る熱フラッ クスであり、この意味で、大気中の熱収支は地表面および地下の土壌の熱収支と関係している. さ らに、水蒸気が存在する系では、地表面の熱収支は、惑星表面における水蒸気の蒸発と凝結を介して 水蒸気の収支とも関係している. このため、本来は、熱の鉛直拡散、惑星表面の熱収支、地下の土壌 の熱拡散、水蒸気の鉛直拡散を陰解法で計算するためには、すべての方程式を連立して計算しなけ ればならない. 素直に定式化すると、これらすべてを含む連立一次方程式の行列は三重対角行列に ならず、計算量が多くなってしまう. 三重対角行列にするためには、熱の鉛直拡散、地下の土壌の熱

拡散フラックスは下のように離散化される.

$$F_{m,x,k+\frac{1}{2}} = -(TC)_{m,k+\frac{1}{2}} \left(u_{k+1} - u_k\right), \qquad (9.60)$$

$$F_{m,y,k+\frac{1}{2}} = -(TC)_{m,k+\frac{1}{2}} (v_{k+1} - v_k), \qquad (9.61)$$

$$F_{h,k+\frac{1}{2}} = -C_p P_{k+\frac{1}{2}} (TC)_{h,k+\frac{1}{2}} \left(\frac{T_{k+1}}{P_{k+1}} - \frac{T_k}{P_k} \right), \qquad (9.62)$$

$$F_{q,k+\frac{1}{2}} = -(TC)_{q,k+\frac{1}{2}} (q_{k+1} - q_k).$$
(9.63)

ここで, $(TC)_{m,k+\frac{1}{2}}, (TC)_{h,k+\frac{1}{2}}, (TC)_{q,k+\frac{1}{2}}$ は輸送係数¹⁰ であり, 以下のように表現 される.

上部境界では,

$$(TC)_{m,k_{max}+\frac{1}{2}} = 0, (9.64)$$

$$(TC)_{h,k_{max}+\frac{1}{2}} = 0, (9.65)$$

$$(TC)_{q,k_{max}+\frac{1}{2}} = 0. (9.66)$$

 $k = k_{max}$ のとき,

$$F_{m,x,k_{max}+\frac{1}{2}} = 0, (9.67)$$

$$F_{m,y,k_{max}+\frac{1}{2}} = 0, (9.68)$$

$$F_{h,k_{max}+\frac{1}{2}} = 0, (9.09)$$

$$F_{q,kamx+\frac{1}{2}} = 0 (9.70)$$

となる.

 $2 \le k \le k_{max} - 1$ のとき,

$$(TC)_{m,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{m,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}, \qquad (9.71)$$

$$(TC)_{h,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{h,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}, \qquad (9.72)$$

$$(TC)_{q,k+\frac{1}{2}} = \rho_{k+\frac{1}{2}} K_{q,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}.$$
(9.73)

また、上では触れていないが、本来は土壌水分量の収支も関係している.しかし、有限の土壌水分量を考える場合、土壌が含む以上の量の水蒸気が蒸発することはないが、そのような条件を連立一次方程式に課すことは難しく、現実的にはそれを連立して解くことはできない.このことも、上で書いたように水蒸気の鉛直拡散を分離して解く理由である.

一方, 地下の土壌の熱拡散を計算しないモデルにおいては, 熱の鉛直拡散, 惑星表面の熱収支, 水 蒸気の鉛直拡散を連立して得られる行列は三重対角行列になるため, 問題は起こらない. これが前 者の式が用いられる場合である.

10(2011-8-20 石渡) 一般的な用語か?

 $\rho_{k+\frac{1}{2}}$ は次式を用いて評価する.

$$\rho_{k+\frac{1}{2}} = \frac{p_{k+\frac{1}{2}}}{RT_{k+\frac{1}{2}}} \tag{9.74}$$

k=1のとき,バルク法を用いてフラックスを評価する場合には,

$$F_{m,x,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}u_1, \qquad (9.75)$$

$$F_{m,y,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}v_1, \tag{9.76}$$

$$F_{h,k-\frac{1}{2}} = -C_p P_{k-\frac{1}{2}} (TC)_{h,k-\frac{1}{2}} \left(\frac{T_k}{P_k} - \frac{T_s}{P_{k-\frac{1}{2}}} \right), \qquad (9.77)$$

$$F_{q,k-\frac{1}{2}} = -\epsilon (TC)_{q,k-\frac{1}{2}} (q_k - q_s^*).$$
(9.78)

$$(TC)_{m,k-\frac{1}{2}} = \rho_s C_d |\boldsymbol{v}_k|,$$
 (9.79)

$$(TC)_{h,k-\frac{1}{2}} = \rho_s C_h |\boldsymbol{v}_k|,$$
 (9.80)

$$(TC)_{q,k-\frac{1}{2}} = \rho_s C_q |\boldsymbol{v}_k|,$$
 (9.81)

$$\rho_s = \frac{p_s}{RT_0}. \tag{9.82}$$

であり¹¹, 摩擦の時定数や一定の熱フラックス, 物質フラックスを与える場合には, 拡散フラックスは

$$F_{m,x,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}u_1, \qquad (9.83)$$

$$F_{m,y,k-\frac{1}{2}} = -(TC)_{m,k-\frac{1}{2}}v_1, \qquad (9.84)$$

$$F_{h,k-\frac{1}{2}} = F_{h,s}, \tag{9.85}$$

$$F_{q,k-\frac{1}{2}} = F_{q,s}. (9.86)$$

となる. ここで輸送係数は以下のようになる.

$$(TC)_{m,k-\frac{1}{2}} = \frac{1}{\tau_f} \tag{9.87}$$

となる.

9.2.1 鉛直拡散係数の離散表現

鉛直拡散係数, K_m , K_h , K_q は, それぞれ (9.25), (9.26), (9.27) に示した式で計算す る. そのために, リチャードソン数, 風速の鉛直シアー, 混合距離の離散表現が必要 となる. それらの表式は以下の通りである.

vdiff/vdiff.tex(vdiff/vdiff-disc.tex)

¹¹最後は T_0 (大気の温度) なのかね? T_s ではなくて? たぶん, 考え方の問題だけ. どちらが悪い とも言えないだろうけど.

(9.34) で定義したリチャードソン数は、地表面以外では下のように離散化する.

$$R_{i,k+\frac{1}{2}} = \frac{g}{\theta_{k+\frac{1}{2}}} \frac{\theta_{k+1} - \theta_k}{z_{k+1} - z_k} \left| \frac{\partial \boldsymbol{v}}{\partial z} \right|_{k+\frac{1}{2}}^{-2}, \qquad (9.88)$$

$$\left|\frac{\partial \boldsymbol{v}}{\partial z}\right|_{k+\frac{1}{2}} = \sqrt{\left(\frac{u_{k+1}-u_k}{z_{k+1}-z_k}\right)^2 + \left(\frac{v_{k+1}-v_k}{z_{k+1}-z_k}\right)^2}.$$
 (9.89)

混合距離 (9.28) は以下のように離散化する.

$$l_{i,k+\frac{1}{2}} = \frac{k(z_k - z_{surf})}{1 + k(z_k - z_{surf})/l_0}.$$
(9.90)

ここで, *z_{surf}* は地表面高度である.

66

9.2.2 バルク係数の離散表現

バルク係数は, (9.47), (9.48), (9.52), (9.53) に示した式で計算する. そのために, 地 表面のリチャードソン数の離散表現が必要となる. その表式は以下の通りである.

(9.34) で定義したリチャードソン数は、地表面においては、下のように離散化する.

$$R_{i,\frac{1}{2}} = \frac{g}{\theta_s} \frac{\theta_1 - \theta_s}{z_{k+1} - z_s} \left| \frac{\partial \boldsymbol{v}}{\partial z} \right|_{\frac{1}{2}}^{-2}, \qquad (9.91)$$

$$\left|\frac{\partial \boldsymbol{v}}{\partial z}\right|_{\frac{1}{2}} = \sqrt{\left(\frac{u_{k_1} - u_s}{z_1 - z_s}\right)^2 + \left(\frac{v_{k_1} - v_s}{z_1 - z_s}\right)^2},\tag{9.92}$$

$$\theta_s = \frac{T_s}{P_s},\tag{9.93}$$

$$P_s = \left(\frac{p_{00}}{p_s}\right)^{\kappa}.$$
(9.94)

ここで、*z*。は地表面の高度、*T*。は惑星表面温度、*p*。は惑星表面気圧である¹².

¹²ここでは, *R_i* の計算に惑星表面温度を用いているが, 惑星表面上の大気の温度を用いる方法もあるのかもしれない. どちらが良いのかはよく分からない.

9.2.3 運動量拡散の差分方程式の整理

東西方向の運動量の鉛直拡散方程式 (9.54) を整理すると, $2 \le k \le k_{max} - 1$ の とき,

$$-(TC)_{m,k-\frac{1}{2}} \left(u_{k-1}^{t+\Delta t} - u_{k-1}^{t-\Delta t} \right) + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}} \right) \left(u_{k}^{t+\Delta t} - u_{k}^{t-\Delta t} \right) - (TC)_{m,k+\frac{1}{2}} \left(u_{k+1}^{t+\Delta t} - u_{k+1}^{t-\Delta t} \right) = - \left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(9.95)

k = 1のとき、

$$\begin{pmatrix} -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}} \end{pmatrix} \left(u_k^{t+\Delta t} - u_k^{t-\Delta t} \right) - (TC)_{m,k+\frac{1}{2}} \left(u_{k+1}^{t+\Delta t} - u_{k+1}^{t-\Delta t} \right) = - \left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(9.96)

 $k = k_{max}$ のとき,

$$-(TC)_{m,k-\frac{1}{2}} \left(u_{k-1}^{t+\Delta t} - u_{k-1}^{t-\Delta t} \right) + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} \right) \left(u_{k}^{t+\Delta t} - u_{k}^{t-\Delta t} \right) = - \left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(9.97)

となる.

これらをまとめると,

$$\boldsymbol{A}\boldsymbol{x}_u = \boldsymbol{G}_u \tag{9.98}$$

$$\boldsymbol{x}_{u} = \left(u_{1}^{t+\Delta t} - u_{1}^{t-\Delta t}, u_{2}^{t+\Delta t} - u_{2}^{t-\Delta t}, \cdots, u_{k_{max}}^{t+\Delta t} - u_{k_{max}}^{t-\Delta t} \right), \qquad (9.99)$$

$$\boldsymbol{G}_{u} = (g_{u,1}, g_{u,2}, \cdots, g_{u,k_{max}}), \qquad (9.100)$$

$$g_{u,k} = -\left(F_{m,x,k+\frac{1}{2}}^{t-\Delta t} - F_{m,x,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.101)

ここで、 $2 \le k \le k_{max} - 1$ のとき、 $\mathbf{A} = (a_{m,n})$ の各成分は、

$$a_{k,k-1} = -(TC)_{m,k-\frac{1}{2}}, (9.102)$$

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}}, \qquad (9.103)$$

$$a_{k,k+1} = -(TC)_{m,k+\frac{1}{2}}.$$
(9.104)
k = 1 Obs,

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}} + (TC)_{m,k+\frac{1}{2}}, \qquad (9.105)$$

$$a_{k,k+1} = -(TC)_{m,k+\frac{1}{2}}.$$
(9.106)

 $k = k_{max}$ のとき,

$$a_{k,k-1} = -(TC)_{m,k-\frac{1}{2}}, (9.107)$$

$$a_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{m,k-\frac{1}{2}}$$
(9.108)

である.

南北風に関しては、東西風と同様に下のように書くことができる.

$$\boldsymbol{A}\boldsymbol{x}_v = \boldsymbol{G}_v \tag{9.109}$$

$$\boldsymbol{x}_{v} = \left(v_{1}^{t+\Delta t} - v_{1}^{t-\Delta t}, v_{2}^{t+\Delta t} - v_{2}^{t-\Delta t}, \cdots, v_{k_{max}}^{t+\Delta t} - v_{k_{max}}^{t-\Delta t} \right), \quad (9.110)$$

$$\boldsymbol{G}_{v} = (g_{v,1}, g_{v,2}, \cdots, g_{v,k_{max}}), \qquad (9.111)$$

$$g_{v,k} = -\left(F_{m,y,k+\frac{1}{2}}^{t-\Delta t} - F_{m,y,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.112)

である.

9.2.4 熱拡散の差分方程式の整理

熱の鉛直拡散の式 (9.56) を整理すると, $2 \le k \le k_{max} - 1$ のとき,

$$-C_{p}\frac{P_{k-\frac{1}{2}}}{P_{k-1}}(TC)_{h,k-\frac{1}{2}}\left(T_{k-1}^{t+\Delta t}-T_{k-1}^{t-\Delta t}\right) \\ +\left(-C_{p}\frac{1}{2\Delta t}\frac{p_{k+\frac{1}{2}}-p_{k-\frac{1}{2}}}{g}+C_{p}\frac{P_{k-\frac{1}{2}}}{P_{k}}(TC)_{h,k-\frac{1}{2}}+C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k}}(TC)_{h,k+\frac{1}{2}}\right)\left(T_{k}^{t+\Delta t}-T_{k}^{t-\Delta t}\right) \\ -C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k+1}}(TC)_{h,k+\frac{1}{2}}\left(T_{k+1}^{t+\Delta t}-T_{k+1}^{t-\Delta t}\right) \\ = -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t}-F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.113)

のとき, k = 1 のとき, バルク法でフラックスを評価する場合には,

$$-C_{p}(TC)_{h,k-\frac{1}{2}} \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}\right) \\ + \left(-C_{p}\frac{1}{2\Delta t}\frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k}}(TC)_{h,k+\frac{1}{2}} + C_{p}\frac{P_{k-\frac{1}{2}}}{P_{k}}(TC)_{h,k-\frac{1}{2}}\right) \left(T_{k}^{t+\Delta t} - T_{k}^{t-\Delta t}\right) \\ -C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k+1}}(TC)_{h,k+\frac{1}{2}} \left(T_{k+1}^{t+\Delta t} - T_{k+1}^{t-\Delta t}\right) \\ = -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t} - F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.114)

一定値の熱フラックスを与える場合には,

$$\left(-C_{p}\frac{1}{2\Delta t}\frac{p_{k+\frac{1}{2}}-p_{k-\frac{1}{2}}}{g}+C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k}}(TC)_{h,k+\frac{1}{2}}\right)\left(T_{k}^{t+\Delta t}-T_{k}^{t-\Delta t}\right) -C_{p}\frac{P_{k+\frac{1}{2}}}{P_{k+1}}(TC)_{h,k+\frac{1}{2}}\left(T_{k+1}^{t+\Delta t}-T_{k+1}^{t-\Delta t}\right) = -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t}-F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.115)

となる. また, $k = k_{max}$ のとき,

$$-C_{p}\frac{P_{k-\frac{1}{2}}}{P_{k-1}}(TC)_{h,k-\frac{1}{2}}\left(T_{k-1}^{t+\Delta t}-T_{k-1}^{t-\Delta t}\right) + \left(-C_{p}\frac{1}{2\Delta t}\frac{p_{k+\frac{1}{2}}-p_{k-\frac{1}{2}}}{g} + C_{p}\frac{P_{k-\frac{1}{2}}}{P_{k}}(TC)_{h,k-\frac{1}{2}}\right)\left(T_{k}^{t+\Delta t}-T_{k}^{t-\Delta t}\right) = -\left(F_{h,k+\frac{1}{2}}^{t-\Delta t}-F_{h,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.116)

となる.

これらをまとめると、惑星表面におけるフラックスをバルク法で評価する場合には、

$$\boldsymbol{B}_a \boldsymbol{x}_a = \boldsymbol{G}_a \tag{9.117}$$

$$\boldsymbol{x}_{h} = (T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{2}^{t+\Delta t} - T_{2}^{t-\Delta t}, \cdots, T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t})]1,18)$$

$$\boldsymbol{G}_{a} = (a_{h,1}, a_{h,2}, \cdots, a_{h,k}), \qquad (9.119)$$

$$g_{h,k} = -\left(F_{a,k+\frac{1}{2}}^{t-\Delta t} - F_{a,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.110)
(9.120)

と書くことができる.¹³ ここで, $2 \le k \le k_{max} - 1$ のとき, $\boldsymbol{B}_a = (b_{a,m,n})$ の各成

vdiff/vdiff.tex(vdiff/vdiff-disc.tex)

 $^{^{13}}B_a$ の下つき添字の $_a$ は「大気」を表すラベルである. 第 10 章 では地表面の熱収支を扱い, そこでは B_s を用いる.

分は,

$$b_{a,k,k-1} = -C_p \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}}, \qquad (9.121)$$

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,k-\frac{1}{2}} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,\frac{q+\frac{1}{2}}{2}} 22)$$

$$b_{a,k,k+1} = -C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,k+\frac{1}{2}}$$
(9.123)

$$b_{a,k,k+1} = -C_p \frac{k+\frac{1}{2}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}}$$
(9.1)

 $\sigma \sigma b, k = 1 \sigma b s,$

$$b_{a,k,k-1} = -C_p(TC)_{h,k-\frac{1}{2}}, (9.124)$$

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,k+\frac{1}{2}} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,\frac{1}{2}} 25)$$

$$b_{a,k,k+1} = -C_p \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}}$$
(9.126)

であり, $k = k_{max}$ のとき,

$$b_{a,k,k-1} = -C_p \frac{P_{k-\frac{1}{2}}}{P_{k-1}} (TC)_{h,k-\frac{1}{2}}, \qquad (9.127)$$

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k-\frac{1}{2}}}{P_k} (TC)_{h,k-\frac{1}{2}}$$
(9.128)

である.

ここで, **B**_a は k_{max} 行 k_{max} + 1 列の行列であり, この式だけでは未知数が方程式 数よりも多いために閉じない. 方程式を閉じるために, 以下に述べる惑星表面での 熱収支式や地下の熱収支式, もしくは水蒸気の式を用いる. これらの式とあわせて 同時に解く際に用いる行列の形式に関しては, 第 12 章を参照せよ.

また,惑星表面におけるフラックスに一定値を与える場合には,同じように式を変形して整理すると, *k* = 1 のとき,

$$b_{a,k,k} = -C_p \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + C_p \frac{P_{k+\frac{1}{2}}}{P_k} (TC)_{h,k+\frac{1}{2}}, \qquad (9.129)$$

$$b_{a,k,k+1} = -C_p \frac{P_{k+\frac{1}{2}}}{P_{k+1}} (TC)_{h,k+\frac{1}{2}}$$
(9.130)

となる. k > 1 の場合には, (9.121) ~ (9.123) と同様である. この場合には, B_a は k_{max} 行 k_{max} 列の行列であり, 未知数が方程式数と等しいため, この式のみで解く ことができる.

9.2.5 水蒸気 (物質) 拡散の差分方程式の整理

ここでは、水蒸気の鉛直拡散の式の離散化方程式を整理する.

第9.2節の最初の部分で述べたように,水蒸気の鉛直拡散は,用いる惑星表面の水蒸気フラックスの時刻によって2通りの離散化方法を用いる.

惑星表面の水蒸気フラックスとして $t + \Delta t$ の時刻の値を用いる場合, 水蒸気の鉛 直拡散の式 (9.57) を整理すると, $2 \le k \le k_{max} - 1$ のとき,

$$\begin{split} &-(TC)_{q,k-\frac{1}{2}} \left(q_{k-1}^{t+\Delta t} - q_{k-1}^{t-\Delta t} \right) \\ &+ \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + (TC)_{q,k-\frac{1}{2}} \right) \left(q_{k}^{t+\Delta t} - q_{k}^{t-\Delta t} \right) \\ &- (TC)_{q,k+\frac{1}{2}} \left(q_{k+1}^{t+\Delta t} - q_{k+1}^{t-\Delta t} \right) \\ &= - \left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(9.131)
$$\succeq \And \vartheta, \ k = 1 \ \mathcal{O} \succeq \And, \end{split}$$

$$-\epsilon (TC)_{q,k-\frac{1}{2}} \frac{\partial q_s^*}{\partial T_s} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) + \left(b_- \frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + \epsilon (TC)_{q,k-\frac{1}{2}} \right) \left(q_k^{t+\Delta t} - q_k^{t-\Delta t} \right) - (TC)_{q,k+\frac{1}{2}} \left(q_{k+1}^{t+\Delta t} - q_{k+1}^{t-\Delta t} \right) = - \left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(9.133)

となり, $k = k_{max}$ のとき,

$$+ \left(TC\right)_{q,k-\frac{1}{2}} \left(q_{k-1}^{t+\Delta t} - q_{k-1}^{t-\Delta t}\right) \\ + \left(-\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k-\frac{1}{2}}\right) \left(q_{k}^{t+\Delta t} - q_{k}^{t-\Delta t}\right)$$
(9.134)

$$= -\left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.135)

となる.

これらをまとめると,

$$\boldsymbol{C}\boldsymbol{x}_q = \boldsymbol{G}_q \tag{9.136}$$

と書くことができる. ここで,

$$\boldsymbol{x}_{q} = (T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, q_{1}^{t+\Delta t} - q_{1}^{t-\Delta t}, q_{2}^{t+\Delta t} - q_{2}^{t-\Delta t}, \cdots, q_{k_{max}}^{t+\Delta t} - q_{k_{max}}^{t-\Delta t})$$

$$\mathbf{G}_{q} = (g_{q,1}, g_{q,2}, \cdots, g_{q,k_{max}}), \tag{9.136}$$

$$g_{q,k} = -\left(F_{q,k+\frac{1}{2}}^{t-\Delta t} - F_{q,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(9.139)

であり、 $2 \le k \le k_{max} - 1$ のとき、 $C = (c_{m,n})$ の各成分は、

$$c_{k,k-1} = -(TC)_{q,k-\frac{1}{2}}, (9.140)$$

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + (TC)_{q,k-\frac{1}{2}}, \qquad (9.141)$$

$$c_{k,k+1} = -(TC)_{q,k+\frac{1}{2}}.$$
(9.142)

 $k = 1 \mathcal{O} \mathcal{E} \mathfrak{F},$

$$c_{k,k-1} = -\epsilon (TC)_{q,k-\frac{1}{2}} \frac{\partial q_s^*}{\partial T_s}, \qquad (9.143)$$

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}} + \epsilon(TC)_{q,k-\frac{1}{2}}, \qquad (9.144)$$

$$c_{k,k+1} = -(TC)_{q,k+\frac{1}{2}}, (9.145)$$

 $k = k_{max}$ のとき

$$c_{k,k-1} = -(TC)_{q,k-\frac{1}{2}}, (9.146)$$

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k-\frac{1}{2}}$$
(9.147)

である.

ここで, *C* は *k_{max}* 行 *k_{max}* + 1 列の行列であり, この式だけでは未知数が方程式数 よりも多いために閉じない. 方程式を閉じるために, 熱の鉛直拡散の式や惑星表面 での熱収支式や地下の熱収支式を同時に解く. 同時に解く際に用いる行列の形式 に関しては, 第 12 章を参照せよ.

なお, 惑星表面フラックスとして $t - \Delta t$ の時刻の値を用いる場合には, 同じよう に式を変形して整理すると, k = 1 のとき,

$$c_{k,k-1} = 0, (9.148)$$

$$c_{k,k} = -\frac{1}{2\Delta t} \frac{p_{k+\frac{1}{2}} - p_{k-\frac{1}{2}}}{g} + (TC)_{q,k+\frac{1}{2}}, \qquad (9.149)$$

$$c_{k,k+1} = -(TC)_{q,k+\frac{1}{2}} \tag{9.150}$$

となる. $k \ge 2$ においては, (9.140) ~(9.142) と同様である. この場合には, C は k_{max} 行 k_{max} 列の行列であり, この式だけで閉じる.

なお,惑星表面フラックスとして一定値を用いる場合にも同様の方法で解くことが できる.

9.3 参考文献

- Businger, J.A., Wyngaard, J. C., Izumi, Y., Bradley, E. F., 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181–189.
- Kondo, J and Sato, T., 1982: The determination of the von Karman Constant. J. Meteorol. Soc. Japan, 60, 461–471.
- Louis, J-F., M. Tiedtke, and J-F. Geleyn, 1982: A short history of the PBL parameterization at ECMWF, Workshop on Planetary Boundary Layer Parameterization, 59-80, ECMWF, Reading, U.K..
- Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., **31**, 1791–1806.
- Mellor, G. L., and T. Yamada, 1982: Development of a turbulent closure model for geophysical fluid problems, *Rev. Geophys. Space Phys.*, 20, 851–875.
- Sheppard, P.A., 1947: The Aerodynamic Drag of the Earth's Surface and the Value of von Karman's Constant in the Lower Atmosphere. Proc. Roy. Soc. (London), A188, 208-222.
- 木田 重雄, 柳瀬 真一郎, 1990: 乱流力学, 朝倉書店.
- 近藤 純正, 1982: 大気境界層の科学 -大気と地球表面の対話- (気象学のプロムナー ド 4), 東京堂出版.

第10章 惑星表面・地下の熱収支

10.1 数理表現

ここでは、惑星表面・地下の熱収支について述べる.

10.1.1 惑星表面 1 層モデル

惑星表面に 1 層の板があるモデルを考える. このモデルは slab ocean モデルと等価である.

この1層の板の熱容量が有限の時,熱収支は下のように表現できる.

$$C_s \frac{\partial T_s}{\partial t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_g.$$
(10.1)

ここで C_s は熱容量である.

一方,熱容量が無限大のときは下のように表現できる.

$$\frac{\partial T_s}{\partial t} = 0. \tag{10.2}$$

このときは,惑星表面温度を固定することと等価であり,下のように書くことができる.

$$T_s = \text{Const.}$$
 (10.3)

10.1.2 土壌熱拡散モデル

地表面のモデルとして, 土壌中の熱伝導を考慮したモデルを考える. 土壌温度の熱 伝導方程式と, その境界条件としての地表面の熱収支は

$$C_g \frac{\partial T_g}{\partial t} = -\frac{\partial F_{g,h}}{\partial z} \tag{10.4}$$

$$F_{g,h} = F_{SR} + F_{LR} + F_h + LF_q \text{ for } z = 0$$
 (10.5)

$$F_{g,h} = -\kappa \frac{\partial T_g}{\partial z} \quad \text{for } z < 0$$
 (10.6)

となる. ここで C_g は単位体積当たりの土壌比熱であり, κ は土壌の熱拡散係数である.

融雪に伴う熱収支の修正

惑星表面に積雪があり,かつ惑星表面温度が凝結温度を上回る時には,融雪が起こる.この時,積雪が残っている限り,惑星表面温度は凝結温度を超えることはない.

この時の惑星表面の熱収支は,

$$F_g = F_s + F_L + F_c + LF_q + F_{SM}$$
$$= 0$$
(10.7)

となる. ここで, F_{SM} は融雪による熱フラックスである.

10.1.3 海氷 1 層熱収支モデル

海氷が存在する場合のモデルとして,1層の海氷のモデルを考える.海氷面上の熱 収支は,

$$C_i \frac{\partial T_s}{\partial t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_g.$$
(10.8)

となる. ここで, C_i は海氷の単位面積当たりの熱容量, ...

10.2 離散表現

ここでは,惑星表面・地下の熱収支の離散化について述べる.

10.2.1 惑星表面 1 層モデル

惑星表面に 1 層の板があるモデルにおいて, 熱容量が有限の場合の熱収支の式 (10.1) を, 第9章 に示した惑星表面におけるフラックスを用いて整理すると,

$$-L\epsilon(TC)_{q,\frac{1}{2}} \left(q_{1}^{t+\Delta t} - q_{1}^{t-\Delta t} \right) + \left(\frac{C_{s}}{2\Delta t} + C_{p}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{s}} + L\epsilon(TC)_{q,\frac{1}{2}} \frac{\partial q_{s}^{*}}{\partial T} \right) \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t} \right) + \left(-C_{p} \frac{P_{\frac{1}{2}}}{P_{1}} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{1}} \right) \left(T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t} \right) = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_{s}^{t-\Delta t}, T_{1}^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g}^{t+\Delta t}$$
(10.9)

となる. なお, この変形においては, 惑星表面におけるフラックスとして $t + \Delta t$ の時刻の値を用いている. もし, 惑星表面における水蒸気フラックスとして $t - \Delta t$ の値を用いる場合には, 左辺第一項がなくなり, また $L\epsilon(TC)_{q,\frac{1}{2}} \frac{\partial q_s^*}{\partial T}$ を削除すれば良い. これらを, 今後の式の整理の都合から, k = 0 として下の様に書き直す.

$$b_{s,k,k-1} \left(q_1^{t+\Delta t} - q_1^{t-\Delta t} \right) + b_{s,k,k} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) + b_{s,k,k+1} \left(T_1^{t+\Delta t} - T_1^{t-\Delta t} \right) = g_{s,k}$$
(10.10)

ここで,

$$b_{s,k,k-1} = -L\epsilon(TC)_{q,\frac{1}{2}}$$
(10.11)

$$b_{s,k,k} = \frac{C_s}{2\Delta t} + C_p (TC)_{h,\frac{1}{2}} + L\epsilon (TC)_{q,\frac{1}{2}} \frac{\partial q_s^*}{\partial T_s} + \frac{\partial F_{LR}}{\partial T_s}$$
(10.12)

$$b_{s,k,k+1} = -C_p \frac{P_{\frac{1}{2}}}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1}$$
(10.13)

$$g_{s,k} = -F_{SR}^{t+\Delta t} - F_{LR}\left(T_s^{t-\Delta t}, T_1^{t-\Delta t}\right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_g^{t+\Delta t}(10.14)$$

である.

一方,層の熱容量が無限大(もしくは惑星表面温度が固定)の場合には、同様にして

$$b_{s,k,k-1} = 0 (10.15)$$

$$b_{s,k,k} = 1$$
 (10.16)

$$b_{s,k,k+1} = 0 (10.17)$$

$$g_{s,k} = 0.$$
 (10.18)

となる.

10.2.2 地表面における熱収支と地下における熱伝導方程式

土壌の熱伝導方程式は下のように離散化される.

$$C_g \frac{T_{g,k}^{t+\Delta t} - T_{g,k}^{t-\Delta t}}{2\Delta t} = -\frac{F_{g,h,k+\frac{1}{2}}^{t+\Delta t} - F_{g,h,k-\frac{1}{2}}^{t+\Delta t}}{z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}}}$$
(10.19)

ここで, $1 \le k \le k_{s,max} - 1$ のとき,

$$F_{g,h,k+\frac{1}{2}} = -(TC)_{g,k+\frac{1}{2}} \left(T_{g,k+1} - T_{g,k}\right), \qquad (10.20)$$

$$(TC)_{g,k+\frac{1}{2}} = \kappa_{g,k+\frac{1}{2}} \frac{1}{z_{k+1} - z_k}$$
(10.21)

であり, 上部境界条件は (k = 1 のとき),

$$F_{g,h,k-\frac{1}{2}} = F_{SR} + F_{LR} + F_{h,\frac{1}{2}} + LF_{q,\frac{1}{2}}$$
(10.22)

であり、下部境界条件は $(k = k_{s,max} \text{ obs})$,

$$F_{g,h,k+\frac{1}{2}} = 0 \tag{10.23}$$

である.

しかし, このままでは方程式の数よりも未知数 (大気温度 T (k_{max} 個), 地表面温度 T_s (1 個), 土壌温度 T_g ($k_{s,max}$ 個)) の数の方が多いために解けない. そこで以下の 式を導入する.

$$F_{g,h,\frac{1}{2}} = -(TC)_{g,\frac{1}{2}} (T_{g,1} - T_s)$$
(10.24)

$$(TC)_{g,\frac{1}{2}} = \kappa_{g,\frac{1}{2}} \frac{1}{z_1 - 0}$$
(10.25)

今後, (10.24) を上部境界条件と考え, 同時に, (10.22) を k = 0 における式と考え ることで, 大気と土壌の熱収支を仲介させる¹.

土壌の熱拡散方程式を変形して整理すると、 $2 \le k \le k_{s,max} - 1$ のとき、

$$-(TC)_{g,k-\frac{1}{2}} \left(T_{g,k-1}^{t+\Delta t} - T_{g,k-1}^{t-\Delta t} \right) + \left\{ \frac{1}{2\Delta t} C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}} \right) + (TC)_{g,k-\frac{1}{2}} + (TC)_{g,k+\frac{1}{2}} \right\} \left(T_{g,k}^{t+\Delta t} - T_{g,k}^{t-\Delta t} \right) - (TC)_{g,k+\frac{1}{2}} \left(T_{g,k+1}^{t+\Delta t} - T_{g,k+1}^{t-\Delta t} \right) = - \left(F_{g,h,k+\frac{1}{2}}^{t-\Delta t} - F_{g,h,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(10.26)

^{- 1}ここでは, $-k_{max} \le k \le -1$ が大気中の層のインデクスであり, k = 0が, 言わば, 地表面のインデクスであり, $1 \le k \le k_{s,max}$ が土壌中のインデクスとなる.

surface/energybudget.tex(surface/energybudget-disc.tex) 2014/07/03(地球流体電脳倶楽部)

となり, $k = k_{s,max}$ のとき,

$$-(TC)_{g,k-\frac{1}{2}} \left(T_{g,k-1}^{t+\Delta t} - T_{g,k-1}^{t-\Delta t} \right) + \left\{ \frac{1}{2\Delta t} C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}} \right) + (TC)_{g,k-\frac{1}{2}} \right\} \left(T_{g,k}^{t+\Delta t} - T_{g,k}^{t-\Delta t} \right) = - \left(F_{g,h,k+\frac{1}{2}}^{t-\Delta t} - F_{g,h,k-\frac{1}{2}}^{t-\Delta t} \right)$$
(10.27)

となる.

k = 1 における式は, (10.19) を (10.24) の式を用いて変形することで得られる. 得 られる式は, k = 2 の式において,

$$T_{g,k-1} = T_s$$
 (10.28)

とした式と同じである.

k = 0 のとき、この式は、式の形としては、地表面に熱容量ゼロの仮想的な層が存 在すると仮定することと等価である.そこで、ここではこの考えを拡張し、一様な 温度 T_sを持ち,単位面積当たりの熱容量がC_sである層が地表面直下にあると考 えることにする. この層の熱収支の式は (10.22) を拡張し, 以下のように書くこと ができる².

$$C_s \frac{\partial T_s}{\partial t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_{g,h,\frac{1}{2}}$$
(10.29)

この式を時間に関して離散化すると、

$$C_s \frac{T_s^{t+\Delta t} - T_s^{t-\Delta t}}{2\Delta t} = -F_{SR} - F_{LR} - F_{h,\frac{1}{2}} - LF_{q,\frac{1}{2}} + F_{g,h,\frac{1}{2}}$$
(10.30)

となる.この式を整理すると、

$$(TC)_{g,\frac{1}{2}} \left(T_{g,1}^{t+\Delta t} - T_{g,1}^{t-\Delta t} \right) + \left(\frac{C_s}{2\Delta t} - (TC)_{g,\frac{1}{2}} + C_p (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_s} \right) \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) + \left(-C_p \frac{P_1}{2} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1} \right) \left(T_1^{t+\Delta t} - T_1^{t-\Delta t} \right) = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{g,\frac{1}{2}}^{t-\Delta t} + F_{g,h,\frac{1}{2}}^{t-\Delta t}$$
(10.31)

 $^{2}C_{s} = 0$ の場合に, (10.22)と等しくなることは容易に確認できる. このように定式化しておく と、slub ocean の条件に適応できる. 例えば, $C_s \neq 0$, $F_{g,h,k-\frac{1}{2}} = 0$, $(TC)_{g,\frac{1}{2}} = 0$ の場合には、slub ocean に対応する.しかし、これは単に計算上 / モデル開発上の工夫であるが、実際にどの程度役 に立つかは未知数.

となる. ただし, ここでは三重対角行列にするために, 潜熱フラックスは $t - \Delta t$ の時刻のものを用いる.

これらをまとめると,

$$\boldsymbol{B}_{g}\boldsymbol{x}_{g} = \boldsymbol{G}_{g} \tag{10.32}$$

と書くことができる.ここで,

$$\boldsymbol{x}_{g} = \left(T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, \\ T_{g,1}^{t+\Delta t} - T_{g,1}^{t-\Delta t}, T_{g,2}^{t+\Delta t} - T_{g,2}^{t-\Delta t}, ..., T_{g,k_{s,max}}^{t+\Delta t} - T_{g,k_{s,max}}^{t-\Delta t}\right), \quad (10.33)$$

$$G_{g} = (g_{g,0}, g_{g,1}, g_{g,2}, \dots, g_{g,k_{s,max}}),$$
(10.34)

$$g_{g,0} = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{a,\frac{1}{2}}^{t-\Delta t} + F_{a,h,\frac{1}{2}}^{t-\Delta t}$$
(10.35)

$$g_{g,k\geq 1} = -\left(F_{g,k+\frac{1}{2}}^{t-\Delta t} - F_{g,k-\frac{1}{2}}^{t-\Delta t}\right)$$
(10.36)

ここで, $1 \le k \le k_{s,max} - 1$ のとき,

$$b_{g,k,k-1} = -(TC)_{g,k-\frac{1}{2}}$$
(10.37)

$$b_{g,k,k} = \frac{1}{2\Delta t} C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}} \right) + (TC)_{g,k-\frac{1}{2}} + (TC)_{g,k+\frac{1}{2}} \quad (10.38)$$

$$b_{g,k,k+1} = -(TC)_{g,k+\frac{1}{2}} \tag{10.39}$$

$$b_{g,k,k-1} = -C_p \frac{P_{\frac{1}{2}}}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1}$$
(10.40)

$$b_{g,k,k} = \frac{C_s}{2\Delta t} - (TC)_{g,\frac{1}{2}} + C_p (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_s}$$
(10.41)

$$b_{g,k,k+1} = (TC)_{g,\frac{1}{2}} \tag{10.42}$$

であり 3 , $k = k_{s,max}$ のとき,

$$b_{g,k,k-1} = -(TC)_{g,k-\frac{1}{2}} \tag{10.43}$$

$$b_{g,k,k} = \frac{1}{2\Delta t} C_{g,k}, \left(z_{k+\frac{1}{2}} - z_{k-\frac{1}{2}} \right) + (TC)_{g,k-\frac{1}{2}}$$
(10.44)

である.

³ここでは, T_g (土壌温度), T_s (地表面温度), T (大気温度) の順番に書いているが, 2010/02/20 時点のコードでは逆の順番になっている.

ただし, B_g は $k_{s,max}$ + 1 行 $k_{s,max}$ + 2 列の行列であり, この式だけでは未知数が 方程式数よりも多いために閉じない. 方程式を閉じるために, 熱の鉛直拡散の式と 同時に解く.

なお,層の熱容量が無限大(もしくは惑星表面温度が固定)の場合には,

$$b_{g,k,k-1} = 0 (10.45)$$

$$b_{g,k,k} = 1$$
 (10.46)

$$b_{g,k,k+1} = 0 (10.47)$$

$$g_{g,k} = 0$$
 (10.48)

である.

10.2.3 海氷面上の熱収支

海氷面上の熱収支式 ... を離散化する.

海氷面上の,海氷に伝わる熱フラックスを

$$F_{g,\frac{1}{2}} = -\frac{\kappa_i}{h_i} \left(T_s - T_0\right) \tag{10.49}$$

と書くことにする. ここで, h_i は海氷の厚さであり, T_0 は海氷下の海水温である. このとき, 海氷面上の熱収支式 … は下のように離散化される.

$$\frac{C_i}{2\Delta t} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right)
= -F_{SR}^{t+\Delta t} - F_{LR}^{t+\Delta t} - F_{h,\frac{1}{2}}^{t+\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g,\frac{1}{2}}^{t+\Delta t}$$
(10.50)

ただし, 潜熱フラックスは $t - \Delta t$ の時刻のものを用いる⁴. これを整理すると,

$$\left(\frac{C_{i}}{2\Delta t} + C_{p}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{s}} + \frac{\kappa_{i}}{h_{i}}\right) \left(T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}\right) \\
+ \left(-C_{p}\frac{P_{\frac{1}{2}}}{P_{1}}(TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_{1}}\right) \left(T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}\right) \\
= -F_{SR}^{t+\Delta t} - F_{LR} \left(T_{s}^{t-\Delta t}, T_{1}^{t-\Delta t}\right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g,\frac{1}{2}}^{t-\Delta t} \quad (10.51)$$

⁴これは, 整理した結果得られる行列を三重対角行列にするためである.これは, 水蒸気の式に おいて惑星表面の水蒸気フラックスの値として $t - \Delta t$ の時刻の値を使うことにしたことに起因し ており, その場合には, ここでも $t - \Delta t$ の時刻のフラックスを使わなければ水の質量が保存されな い. もちろん, 他のやり方はあり得るだろう.

となる.

以上を整理し, 今後の式の整理を念頭において, k = 0 として下の形に書くことに する.

$$b_{i,k,k-1} \left(T_s^{t+\Delta t} - T_s^{t-\Delta t} \right) + b_{i,k,k} \left(T_1^{t+\Delta t} - T_1^{t-\Delta t} \right) = g_{i,k}$$
(10.52)

ここで,

$$b_{i,k,k} = \frac{C_i}{2\Delta t} + C_p (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_s} + \frac{\kappa_i}{h_i}$$
(10.53)

$$b_{i,k,k+1} = -C_p \frac{P_{\frac{1}{2}}}{P_1} (TC)_{h,\frac{1}{2}} + \frac{\partial F_{LR}}{\partial T_1}$$
(10.54)

$$g_{i,k} = -F_{SR}^{t+\Delta t} - F_{LR} \left(T_s^{t-\Delta t}, T_1^{t-\Delta t} \right) - F_{h,\frac{1}{2}}^{t-\Delta t} - LF_{q,\frac{1}{2}}^{t-\Delta t} + F_{g,\frac{1}{2}}^{t-\Delta t}$$
(10.55)

である.

10.2.4 融雪による熱収支の修正

ここはまだ整理していない.

融雪時の地表面の熱収支式 ... を離散化すると,

$$F_g^{n+1} = -\kappa \frac{T_s^{n+1} - T_{g,1}^{n+1}}{z_{\frac{1}{2}} - z_1}$$
(10.56)

$$= F_s^{n+1} + F_L^{n+1} + F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1}$$
(10.57)

$$C_{g,1}\frac{T_{g,1}^{n+1} - T_{g,1}^{n-1}}{2\Delta t} = -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \left\{ F_s^{n+1} + F_L^{n+1} + F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1} - F_g^{n+1} -$$

となる.ここで, $F_g^{n+1}, F_s^{n+1}, F_L^{n+1}, F_c^{n+1}, LF_q^{n+1}, F_{SM}^{n+1}$ はそれぞれ, 地下への熱伝 導フラックス, 短波放射フラックス, 長波放射フラックス, 顕熱フラックス, 潜熱フ ラックス, 融雪による熱フラックスである. κ は土壌の熱拡散係数である.

 $F_s^{n+1}, F_c^{n+1}, LF_q^{n+1}, F_g^{n+1}$ は,前節までの方法で連立一次方程式を解くことで得られた値を用いることとし,地表面温度 $T_s^{n+1}, T_{g,1}^{n+1}$ を介して F_L^{n+1} を調節することで融雪量,すなわち F_{SM}^{n+1} を求める.ここで,

$$F_L^{n+1} = F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) + \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right)$$
(10.59)

$$\begin{split} \mathfrak{C}\mathfrak{B}\mathfrak{S}\mathfrak{h}\mathfrak{S},\,(\ldots),\,(\ldots)\,\,\mathfrak{L}\mathfrak{V},\\ &-\kappa\frac{T_s^{n+1}-T_{g,1}^{n+1}}{z_{\frac{1}{2}}-z_1} = F_s^{n+1}+F_L^{n-1}+\frac{\partial F_L}{\partial T_1}\left(T_1^{n+1}-T_1^{n-1}\right)+\frac{\partial F_L}{\partial T_s}\left(T_s^{n+1}-T_s^{n-1}\right)\\ &\quad +F_c^{n+1}+LF_q^{n+1}+F_{SM}^{n+1}, \end{split} \tag{10.60} \\ C_{g,1}\frac{T_{g,1}^{n+1}-T_{g,1}^{n-1}}{2\Delta t} = -\frac{1}{z_{\frac{1}{2}}-z_{\frac{3}{2}}}\bigg\{F_s^{n+1}+F_L^{n-1}+\frac{\partial F_L}{\partial T_1}\left(T_1^{n+1}-T_1^{n-1}\right)+\frac{\partial F_L}{\partial T_s}\left(T_s^{n+1}-T_s^{n-1}\right)\\ &\quad +F_c^{n+1}+LF_q^{n+1}+F_{SM}^{n+1}-F_g^{n+1}\bigg\}, \end{aligned}$$

となる.

これら 2 つの方程式に対して, 未知数は $T_s^{n+1}, T_{g,1}^{n+1}, F_{SM}^{n+1}$ の 3 つである. そこでま ず, 積雪すべてが解けた場合を想定し, $T_s^{n+1}, T_{g,1}^{n+1}$ を求めることにする. それによっ て得られた $T_s^{n+1}, T_{g,1}^{n+1}$ が不適切であった場合 $(T_{g,1}^{n+1} < T_{cond})$ には, $T_{g,1}^{n+1} = T_{cond}$ として, T_s^{n+1}, F_{SM}^{n+1} を求める.

積雪がすべて解ける場合

このとき, $F_{SM}^{n+1} = \frac{M_{\text{snow}}}{2\Delta t}$ であり, T_s^{n+1} , $T_{g,1}^{n+1}$ が未知数である. ここで, M_{snow} は積 雪量である.

(...) より,

$$-\frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{s}^{n+1} + \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{g,1}^{n+1} = F_{s}^{n+1} + F_{L}^{n-1} + \frac{\partial F_{L}}{\partial T_{1}} \left(T_{1}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} T_{s}^{n+1} - \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}$$

$$+F_{c}^{m+1} + LF_{q}^{m+1} + F_{SM}^{m+1}, \qquad (10.63)$$

$$\partial F_{c} \qquad \partial F_{c} \qquad \partial F_{c}$$

$$\frac{\kappa}{z_{\frac{1}{2}} - z_1} T_{g,1}^{n+1} = F_s^{n+1} + F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) + \frac{\partial F_L}{\partial T_s} T_s^{n+1} - \frac{\partial F_L}{\partial T_s} \mathcal{O}_s^{n+1} + \frac{\partial F_L}{\partial T_s}$$

$$+F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1} \tag{10.65}$$

$$+\frac{\kappa}{z_{\frac{1}{2}}-z_{1}}T_{s}^{n+1},$$
(10.66)

$$T_{g,1}^{n+1} = \left(1 + \frac{z_{\frac{1}{2}} - z_1}{\kappa} \frac{\partial F_L}{\partial T_s}\right) T_s^{n+1}$$

$$(10.67)$$

$$+\frac{z_{\frac{1}{2}}-z_{1}}{\kappa}\left\{F_{s}^{n+1}+F_{L}^{n-1}+\frac{\partial F_{L}}{\partial T_{1}}\left(T_{1}^{n+1}-T_{1}^{n-1}\right)-\frac{\partial F_{L}}{\partial T_{s}}(\mathbb{I}_{s}^{n}.6\$)\right\}$$

$$+F_{c}^{n+1} + LF_{q}^{n+1} + F_{SM}^{n+1} \bigg\}, \qquad (10.69)$$

$$T_{g,1}^{n+1} = \left(1 + \frac{z_{\frac{1}{2}} - z_1}{\kappa} \frac{\partial F_L}{\partial T_s}\right) T_s^{n+1}$$
(10.70)

$$+\frac{z_{\frac{1}{2}}-z_{1}}{\kappa}\alpha\tag{10.71}$$

ここで,

$$\alpha = F_s^{n+1} + F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) - \frac{\partial F_L}{\partial T_s} T_s^{n-1}$$
(10.72)
+ $F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1}$ (10.73)

である. (...) を (...) に代入すると, $\frac{C_{g,1}}{2\Delta t} \left\{ \left(1 + \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \frac{\partial F_{L}}{\partial T_{s}} \right) T_{s}^{n+1} + \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \alpha \right\} - \frac{C_{g,1}}{2\Delta t} T_{g,1}^{n-1} \\
= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \left\{ F_{s}^{n+1} + F_{L}^{n-1} + \frac{\partial F_{L}}{\partial T_{1}} \left(T_{1}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} \left(T_{s}^{n+1} - T_{s}^{n-1} \right) \\
+ F_{c}^{n+1} + LF_{q}^{n+1} + F_{SM}^{n+1} - F_{g}^{n+1} \right\}, \qquad (10.74) \\
= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \left\{ F_{s}^{n+1} + F_{L}^{n-1} + \frac{\partial F_{L}}{\partial T_{1}} \left(T_{1}^{n+1} - T_{1}^{n-1} \right) + \frac{\partial F_{L}}{\partial T_{s}} T_{s}^{n+1} - \frac{\partial F_{L}}{\partial T_{s}} T_{s}^{n-1} \\
+ F_{c}^{n+1} + LF_{q}^{n+1} + F_{SM}^{n+1} \right\}, \qquad (10.75) \\
+ \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_{g}^{n+1}, \qquad (10.76) \\
= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\partial F_{L}}{\partial T_{s}} T_{s}^{n+1} \qquad (10.77)$

$$-\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \bigg\{ F_s^{n+1} + F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) - \frac{\partial F_L}{\partial T_s} T_s^{n-1} + F_c^{n+1} + LF_q^{n+1} + F_{SM}^{n+1} \bigg\},$$
(10.78)

$$+\frac{1}{z_{\frac{1}{2}}-z_{\frac{3}{2}}}F_{g}^{n+1},\tag{10.79}$$

$$= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\partial F_L}{\partial T_s} T_s^{n+1}$$
(10.80)

$$-\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \alpha \tag{10.81}$$

$$+\frac{1}{z_{\frac{1}{2}}-z_{\frac{3}{2}}}F_{g}^{n+1},$$
(10.82)

$$\begin{split} \frac{C_{g,1}}{2\Delta t} \left(1 + \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \frac{\partial F_{L}}{\partial T_{s}}\right) T_{s}^{n+1} + \frac{C_{g,1}}{2\Delta t} \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \alpha - \frac{C_{g,1}}{2\Delta t} T_{g,1}^{n-1} \\ &= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\partial F_{L}}{\partial T_{s}} T_{s}^{n+1} - \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \alpha + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_{g}^{n+1}, \quad (10.83) \\ \left\{ \frac{C_{g,1}}{2\Delta t} \left(1 + \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \frac{\partial F_{L}}{\partial T_{s}}\right) + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\partial F_{L}}{\partial T_{s}} \right\} T_{s}^{n+1} \\ &= -\left(\frac{C_{g,1}}{2\Delta t} \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \right) \alpha + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_{g}^{n+1} + \frac{C_{g,1}}{2\Delta t} T_{g,1}^{n-1} (10.84) \\ T_{s}^{n+1} &= \left\{ \frac{C_{g,1}}{2\Delta t} \left(1 + \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \frac{\partial F_{L}}{\partial T_{s}}\right) + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\partial F_{L}}{\partial T_{s}} \right\}^{-1} \\ &= \left\{ -\left(\frac{C_{g,1}}{2\Delta t} \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \right) \alpha + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_{g}^{n+1} + \frac{C_{g,1}}{2\Delta t} T_{g,1}^{n-1} (10.84) \right\} \\ \end{array} \right\}$$

積雪がすべて解けない場合

このとき, $T_{g,1}^{n+1} = T_{cond}$ であり, F_{SM} , T_s^{n+1} が未知数である. (...) より,

$$F_{SM}^{n+1} = -\kappa \frac{T_s^{n+1} - T_{g,1}^{n+1}}{z_{\frac{1}{2}} - z_1} - F_s^{n+1} - F_L^{n-1} - \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) - \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) - \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right)$$

$$-F_c^{n+1} - LF_q^{n+1}$$
(10.86)

(...) に代入すると,

$$C_{g,1}\frac{T_{g,1}^{n+1} - T_{g,1}^{n-1}}{2\Delta t} = -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \left\{ F_s^{n+1} + F_L^{n-1} + \frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) + \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) + F_c^{n+1} + LF_q^{n+1} \right\}$$
(10.87)

$$-\kappa \frac{T_s^{n+1} - T_{g,1}^{n+1}}{z_{\frac{1}{2}} - z_1} - F_s^{n+1} - F_L^{n-1}$$
(10.88)

$$-\frac{\partial F_L}{\partial T_1} \left(T_1^{n+1} - T_1^{n-1} \right) - \frac{\partial F_L}{\partial T_s} \left(T_s^{n+1} - T_s^{n-1} \right) -F_c^{n+1} - LF_q^{n+1}$$
(10.89)

$$-F_g^{n+1}\bigg\},\tag{10.90}$$

$$= -\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \left\{ -\kappa \frac{T_s^{n+1} - T_{g,1}^{n+1}}{z_{\frac{1}{2}} - z_1} - F_g^{n+1} \right\}$$
(10.91)

$$= \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \kappa \frac{T_s^{n+1} - T_{g,1}^{n+1}}{z_{\frac{1}{2}} - z_1} + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_g^{n+1}$$
(10.92)

$$= \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{s}^{n+1} - \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{g,1}^{n+1} + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_{g}^{n+1} \quad (10.93)$$

$$\frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{s}^{n+1} = C_{g,1} \frac{T_{g,1}^{n+1} - T_{g,1}^{n-1}}{2\Delta t} + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{g,1}^{n+1} - \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} F_{g}^{n} \mathring{I} \vartheta. 94)$$

$$T_{s}^{n+1} = \left(z_{\frac{1}{2}} - z_{\frac{3}{2}} \right) \frac{z_{\frac{1}{2}} - z_{1}}{\kappa} \qquad (10.95)$$

$$\left(C_{g,1} \frac{T_{g,1}^{n+1} - T_{g,1}^{n-1}}{2\Delta t} + \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} \frac{\kappa}{z_{\frac{1}{2}} - z_{1}} T_{g,1}^{n+1} - \frac{1}{z_{\frac{1}{2}} - z_{\frac{3}{2}}} (\mathring{I} \vartheta)^{+} \vartheta \vartheta \right)$$

第11章 バケツモデル

11.1 数理表現

ここでは、地表面水分量の収支について述べる.

Manabe (1969) に従い, 地面水分量は下の方程式に従うとする.

$$\frac{\partial M_w}{\partial t} = -F_q + F_{PRCP} + F_{SM} - F_{RO} \tag{11.1}$$

ここで, F_q , F_{PRCP} , F_{SM} , F_{RO} はそれぞれ地表面の水蒸気フラックス, 降水・降雪フ ラックス, 融雪フラックス, そして流出フラックスである. ただし, $0 \le M_w \le M_{w,max}$ であり, $M_{w,max}$ は地面が保持できる水の最大量である.

11.2 離散表現

地表面水分量の支配方程式は下のように離散化される.

$$\frac{M_w^{n+1} - M_w^{n-1}}{2\Delta t} = -F_{q,\frac{1}{2}} + F_{PRCP} + F_{SM} - F_{RO}$$
(11.2)

ここで, F_q , F_{PRCP} , F_{SM} , F_{RO} はそれぞれ地表面の水蒸気フラックス, 降水・降雪フ ラックス, 融雪フラックス, そして流出フラックスである. ただし, $0 \le M_w \le M_{w,max}$ であり, $M_{w,max}$ は地面が保持できる水の最大量である.

11.3 参考文献

Manabe, S., 1969: Climate and the ocean circulation I. The atmospheric circulation and the hydrology of the Earth's surface, Mon. Wea. Rev., 97, 739–774.

surface/bucket.tex(surface/bucket-references.tex)

第12章 熱収支を統合した連立方程式 の構成

12.1 離散表現

10.2 節において, 大気中の熱拡散における収支, 大気中の水蒸気の拡散の収支, 惑 星表面の1層モデルの熱収支, 惑星表面および土壌中の熱拡散の収支, 海氷面上の 熱収支について書いた. 既に書いたように, これらはそれぞれ単独では必ずしも閉 じておらず, 適宜組み合わせて連立方程式を構成する必要がある. ここでは, 以下 の3通りの組み合わせ方を示す.

- 惑星表面に1層モデルを用いる場合
- 土壌熱拡散モデルを用いる場合
- 海氷熱収支モデルを用いる場合

12.1.1 惑星表面に 1 層モデルを用いる場合

ここでは, 惑星表面に 1 層モデルを用いる場合を考える. このとき, 大気中の熱拡 散の収支式 (9.117), 惑星表面の 1 層モデルの熱収支式 (10.10), 水蒸気拡散による 収支式 (9.136) を同時に解く. これらの式をまとめると下のように整理される.

$$\boldsymbol{D}\boldsymbol{x}_{hq} = \boldsymbol{G}_{hq} \tag{12.1}$$

$$\boldsymbol{x}_{hq} = \begin{pmatrix} q_{k_{max}}^{t+\Delta t} - q_{k_{max}}^{t-\Delta t}, ..., q_{2}^{t+\Delta t} - q_{2}^{t-\Delta t}, q_{1}^{t+\Delta t} - q_{1}^{t-\Delta t}, \\ T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, \\ T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{2}^{t+\Delta t} - T_{2}^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t} \end{pmatrix},$$

$$(12.2)$$

$$= (\Delta q_{k_{max}}, \dots, \Delta q_2, \Delta q_1, \Delta T_s, \Delta T_s)$$
(12.2)

$$\Delta T_1, \Delta T_2, \dots, \Delta T_{k_{max}}), \qquad (12.3)$$

$$\boldsymbol{G}_{hq} = (g_{q,k_{max}}, ..., g_{q,2}, g_{q,1}, g_{s,0}, g_{h,1}, g_{h,2}, ..., g_{h,k_{max}}), \qquad (12.4)$$

Dの各成分は, $k \leq -1$ のとき,

$$d_{-k,k+1} = c_{k,k-1} \tag{12.5}$$

$$d_{-k,k} = c_{k,k} (12.6)$$

$$d_{-k,k-1} = c_{k,k+1} (12.7)$$

$$d_{k,k-1} = b_{s,k,k-1} (12.8)$$

$$d_{k,k} = b_{s,k,k} \tag{12.9}$$

$$d_{k,k+1} = b_{s,k,k+1} (12.10)$$

 (σ, k) $(\sigma, k) \geq 1$ (σ, k)

$$d_{k,k-1} = b_{a,k,k-1} (12.11)$$

$$d_{k,k} = b_{a,k,k} \tag{12.12}$$

$$d_{k,k+1} = b_{a,k,k+1} (12.13)$$

である. なお, $b_{a,k,k}$ などと $c_{k,k}$ などの定義は第9章 において, $b_{s,k,k}$ などの定義は第10章 においてなされている.

この連立一次方程式式を解いて求めた x_{hq} を用いて, 鉛直乱流混合による時間変 化率を下のように計算する.

$$\left(\frac{\partial T}{\partial t}\right)_k = \frac{\Delta T_k}{2\Delta t},\tag{12.14}$$

$$\begin{pmatrix} \frac{\partial T_s}{\partial t} \end{pmatrix} = \frac{\Delta T_s}{2\Delta t},$$
 (12.15)

$$\left(\frac{\partial q}{\partial t}\right)_k = \frac{\Delta q_k}{2\Delta t}.$$
(12.16)

土壌熱拡散モデルを用いる場合 12.1.2

ここでは、土壌熱拡散モデルを用いる場合を考える.このとき、大気中の熱拡散の 収支式 (9.117), 土壌熱拡散の熱収支式 (10.32) を同時に解く. これらの式をまとめ ると下のように整理される.

$$\boldsymbol{D}\boldsymbol{x}_{hg} = \boldsymbol{G}_{hg} \tag{12.17}$$

$$\boldsymbol{x}_{hg} = \begin{pmatrix} T_{g,k_{s,max}}^{t+\Delta t} - T_{g,k_{s,max}}^{t-\Delta t}, ..., T_{g,2}^{t+\Delta t} - T_{g,2}^{t-\Delta t}, T_{g,1}^{t+\Delta t} - T_{g,1}^{t-\Delta t}, \\ T_{s}^{t+\Delta t} - T_{s}^{t-\Delta t}, \\ T_{1}^{t+\Delta t} - T_{1}^{t-\Delta t}, T_{2}^{t+\Delta t} - T_{2}^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t} \end{pmatrix},$$
(12.18)
$$= (\Delta T_{s}) \Delta T_{s} \Delta T_{s} \Delta T_{s}$$

$$(\Delta I_{g,k_{s,max}}, \dots, \Delta I_{g,2}, \Delta I_{g,1}, \Delta T_s,$$

$$\Delta T_1, \Delta T_2, \dots, \Delta T_{k_{max}}), \qquad (12.19)$$

$$\boldsymbol{G}_{hg} = \left(g_{g,k_{s,max}}, \dots, g_{g,2}, g_{g,1}, g_{s,0}, g_{h,1}, g_{h,2}, \dots, g_{h,k_{max}} \right),$$
(12.20)

Dの各成分は, $k \leq 0$ のとき,

$$d_{-k,k+1} = b_{g,k,k-1}$$
(12.21)
$$d_{-k,k} = b_{g,k,k}$$
(12.22)

$$d_{-k,k} = b_{g,k,k} (12.22)$$

$$d_{-k,k-1} = b_{g,k,k+1} (12.23)$$

 $(\sigma b), k \ge 1 \text{ obs}, k \ge 1$

$$d_{k,k-1} = b_{a,k,k-1} (12.24)$$

$$d_{k,k} = b_{a,k,k} \tag{12.25}$$

$$d_{k,k+1} = b_{a,k,k+1} (12.26)$$

である.

この連立一次方程式式を解いて求めた *x_{hg}* を用いて, 鉛直乱流混合による時間変 化率を下のように計算する.

$$\left(\frac{\partial T}{\partial t}\right)_k = \frac{\Delta T_k}{2\Delta t},$$
 (12.27)

$$\left(\frac{\partial T_s}{\partial t}\right) = \frac{\Delta T_s}{2\Delta t},\tag{12.28}$$

$$\left(\frac{\partial T_g}{\partial t}\right)_k = \frac{\Delta T_{g,k}}{2\Delta t}.$$
(12.29)

12.1.3 海氷熱収支モデルを用いる場合

ここでは, 海氷熱収支モデルを用いる場合を考える. このとき, 大気中の熱拡散の 収支式 (9.117), 海氷面上の熱収支式 (10.52), を同時に解く¹. これらの式をまとめ ると下のように整理される.

$$\boldsymbol{D}\boldsymbol{x}_{hi} = \boldsymbol{G}_{hi} \tag{12.30}$$

$$\boldsymbol{x}_{hi} = \left(T_s^{t+\Delta t} - T_s^{t-\Delta t}, \\ T_1^{t+\Delta t} - T_1^{t-\Delta t}, T_2^{t+\Delta t} - T_2^{t-\Delta t}, ..., T_{k_{max}}^{t+\Delta t} - T_{k_{max}}^{t-\Delta t} \right), \quad (12.31)$$

$$\boldsymbol{G}_{hi} = (g_{i,0}, g_{h,1}, g_{h,2}, \dots, g_{h,k_{max}}), \qquad (12.32)$$

Dの各成分は, k = 0のとき,

$$d_{k,k-1} = b_{i,k,k-1} \tag{12.33}$$

$$d_{k,k} = b_{i,k,k}$$
 (12.34)

 (σ, k) $(\sigma, k) \geq 1$ (σ, k)

$$d_{k,k-1} = b_{a,k,k-1} \tag{12.35}$$

$$d_{k,k} = b_{a,k,k} \tag{12.36}$$

$$d_{k,k+1} = b_{a,k,k+1} (12.37)$$

である.

¹現在考えている海氷熱収支モデルは 1 層であり, 水蒸気の熱収支式を含めて定式化しても, 行 列は三重対角行列にすることはできる. しかし, 現状ではそのような定式化は用意していない.

付 録 A 惑星大気の物理定数

A.1 地球大気の物理定数

地球大気の基本的な物理定数を以下に示す.

惑星半径	a	m	6.37×10^{6}
重力加速度	g	${\rm m~s^{-2}}$	9.8
乾燥大気の定圧比熱	C_p	$\rm J~kg^{-1}~K^{-1}$	1004.6
乾燥大気の気体定数	R	$\rm J~kg^{-1}~K^{-1}$	287.04
蒸発潜熱	L	$\rm J~kg^{-1}$	2.5×10^6
水蒸気定圧比熱	C_v	$\rm J~kg^{-1}~K^{-1}$	1810.
水蒸気気体定数	R_v	$\rm J~kg^{-1}~K^{-1}$	461.
液体水の密度	$d_{\mathrm{H_2O}}$	$\rm J~kg^{-1}~K^{-1}$	1000.
水蒸気分子量比	ϵ_v		0.622
仮温度の係数	$\delta_v = \epsilon_v^{-1} - 1$		0.606
乾燥大気の定圧比熱と気体定数の比	$\kappa = R/C_p$		0.286
Kálman 定数	k		0.4

付録B

使用上の注意とライセンス 規定

CREDITS¹ を参照ください.

 $^{^{1}} http://www.gfd-dennou.org/library/dcpam/dcpam5/dcpam5_latest/CREDITS$