Particles from Ephemeral Plume Activities of Enceladus Deposit on Saturnian Satellites.

Naoyuki Hirata
The University of Tokyo
The University of Museum
Background 1

- Enceladus is one of saturnian icy satellites
- Enceladus has the ocean in its sub-surface.
- Icy particles released from satellites form Ering
Background 2

The lifetime of the ocean is **long** or **short**?

- Thermal source is not sufficient to maintain the subsurface ocean
 - the subsurface ocean must freeze over 30 My (Robert & Nimmo 2008)
- No geological evidence to support the large mass decreasing of Enceladus.
 - The current eruption rate is estimate to ~200kg/s (Hansen et al. 2006)
 - This rate should cause significant geological tectonics (Spencer et al. 2009)

Short?

However, observational facts are not obtained yet
Point of this study

- Addressing this issues, we point out the coefficients between rings and satellites.

- Materials erupted from Enceladus form the E ring.
- The E ring materials should affect the surrounding satellites.
- Based on this view, we investigate 5 mid-sized and 7 small satellites.
Finding

We found Helene has the obviously deposits originated from E ring.

This satellite is located at L4 point of Dione
Its mean diameter is ~30 km

We find
Helene has the unusual smooth surface and streaky depression.
These features is formed by the depositions of E ring materials
Discussion

• These features can be explained by the depositions of E ring materials
 – Concentration to the leading side.
 • E ring particles tend to collide to the leading side of the satellite
 • In fact, Dione’s leading side is more strongly contaminated than its trailing side. (Hamilton & Burn 1994)
 • Helene’s Bimodal appearance may be explained
 – This phenomena makes the slope unstabilize and small craters erase
 – Spectral features of leading side is similar to that of E ring

![Diagram showing leading and trailing sides with E ring deposits and Helene’s original surface]
Other small satellites of E ring region

Pallene’s mean diameter is 4 km
Methone’s mean diameter is 3 km
Located within the orbit of Mimas
Spherical shape and
Quite smooth surface

- Located at the L4 and L5 points of the orbit of Tethys
- There are a lot of large craters while there are few small craters
- Surface is somehow smooth
- Streaky depressions can be identified on Calypso

Upper N1630076968, N1514163666, lower N1644754662, N1506184171
Irregular features of these Small satellites can be explained by the depositions of E ring

– Telesto and Calypso
 • E ring of their orbits is denser than that of Helene’s orbits
 which means the accumulations is stronger
 • Their shapes may bury their ordinary surface

– Pallene and Methone
 • E ring of their orbits is much denser than that of Telesto’s or Calypso’s orbits
 which means the accumulations is much stronger
 • The large amount of E ring materials may completely bury their ordinary surface and their shape may be near-spherical ones
E ring accumulations concentrate to the leading side in the case of **Dione** and **Helene**, the trailing side in the case of **Mimas**

the global in the case of **Tethys, Telesto, and Calypso**

- Icy particles emitted from Enceladus has the same orbital velocity with that of Enceladus
- After that, the eccentricity of these particles increase
- Then, eccentric orbits cause
 - The angular velocity decrease in apoapsis
 - The angular velocity increase in periapsis
- Inner region of E ring, ring particles exceed satellites and collide with trailing side of the satellites
- Surrounding region of Enceladus, particles collide anywhere of satellites
- Outer orbit of E ring, ring particles are exceeded by satellites and collide with leading side of the satellites
- In fact, this nature was occurred on Mimas, Tethys, Dione
 - Based on the albedo, spectral features, and radar reflectance
 - This view has the good agreement with the appearances of small satellites of E ring region.
Implications 1

- **Streaky depressions indicate**
 - The friction angle of E ring particles is low, lower than 10 degree
 - the friction coefficient between E ring particles is quite small
 - E ring particles may have a spherical shape with a smooth surface
 - A particle attains a spherical shape due to the surface tensional force of a droplet emitted from Enceladus before frozen as a particle
 - If so, almost all E ring particles are originated from the subsurface ocean (not surface regolith layer)

- **Sample return mission**
 - A future sample return mission might consider utilizing small landers to obtain a sediment core to help reveal the activity of Enceladus

12 satellites of E ring region
Implication 2

• Cratering age of the deposit of E ring on Helene is
 – Less than 50 My, if the cratering rate is the same as the case of Dione
 – Less than 400 My, if the trailing hemisphere was formed at 4 Ga
 – From 3 My to 500 My if I use the cratering estimate of Zahnle et al. 2003
 – The deposits of other small satellites also show the same result

• Based on the eruption rate
 – the mass of solid material per second escaping from Enceladus is most likely ~5 kg/s, currently
 – Assuming that 10 to 100% of particles ejected from Enceladus would be lost by collisions to satellites
 – the total volume of the E ring deposits on satellites would accumulate in only 3.8 My to 270 My

• there is the possibility that the accumulations of the E ring material on satellites began several My ago

• the initiation of cryovolcanism on the surface of Enceladus is also the same age?
 – This result is consistent with the theoretical study of Robert and Nimmo (2008)
 • the subsurface ocean must freeze over 30 My
 – *This result is the first one indicating the geologic age of the cryovolcanism on Enceladus*
Conclusion

• The surfaces of small satellites is strongly affected by the cryovolcanism in Enceladus
• The accumulations due to E ring may have began at a few million years ago
• The lifetime of subsurface ocean of Enceladus may be also limited to a few million years