
流体力学授業資料 (2026-01-19)
7. 粘性流体の流れの例

7.1一方向の流れ
一定の断面形をもつまっすぐな管を通る流れを考える. 流れの方向に 𝑥 軸をとる:
𝒗 = (𝑣𝑥 , 0, 0).
ナビエストークス方程式は
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連続の式

𝜕𝑣𝑥
𝜕𝑥

= 0 (5)

から 𝑣𝑥 は 𝑥 によらない: 𝑣𝑥 = 𝑣𝑥 (𝑦, 𝑧, 𝑡).
運動方程式の 𝑦成分, 𝑧成分の式から, 𝑝 は 𝑦, 𝑧によらない: 𝑝 = 𝑝(𝑥, 𝑡).
以上より,運動方程式の 𝑥 成分は

𝜌
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左辺は 𝑥 を含まず,右辺は 𝑦, 𝑧を含まないので,両辺は 𝑡 だけの関数. よって

− 𝜕 𝑝
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𝜕𝑧2

)
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第一式より,圧力勾配は一定値 −𝛼(𝑡) となる. 第二式を境界条件のもとに解いて流
れ場を求めることができる.
定常な流れの場合,ポアソン方程式を解くことに帰着される.(
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7.2クエット流
以下の仮定が成り立つ場合を考える.

• 2枚の平行な板にはさまれた密度一定の 2次元非圧縮流体.

• 𝑦 = 0の壁は静止し, 𝑦 = 𝐻 の壁は速度𝑈 で 𝑥 正方向に運動

• 定常状態.

• 物理量は 𝑥 方向に変化しないものとする.

境界条件は

𝑣𝑥 = 0, 𝑣𝑦 = 0 (𝑦 = 0), (10)
𝑣𝑥 = 𝑈, 𝑣𝑦 = 0 (𝑦 = 𝐻). (11)
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U

図 1: クエット流を考える系.

7.2.1速度場

定常, 𝑥 方向変化無しの仮定より − 𝜕 𝑝
𝜕𝑥 = 𝛼 = 0 (𝑝 は一定). よって,流れ場は

𝜕2𝑣𝑥

𝜕𝑦2 = 0 (12)

で決定される. 2回積分して,境界条件 𝑣𝑥 = 0(𝑦 = 0), 𝑣𝑥 = 𝑈 (𝑦 = 𝐻) を使うと

𝑣𝑥 =
𝑈

𝐻
𝑦. (13)
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7.2.2上下の壁に働く応力

応力テンソルは

𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 + 𝜂

(
𝜕𝑣𝑖
𝜕𝑥𝑘

+ 𝜕𝑣𝑘
𝜕𝑥𝑖

)
[N m−2] (14)

今の場合は

𝜎𝑥𝑥 = −𝑝 + 𝜂2
𝜕𝑣𝑥
𝜕𝑥

= −𝑝, (15)

𝜎𝑥𝑦 = 𝜂

(
𝜕𝑣𝑦

𝜕𝑥
+ 𝜕𝑣𝑥

𝜕𝑦

)
= 𝜂

𝑈

𝐻
, (16)

𝜎𝑦𝑦 = −𝑝 + 𝜂2
𝜕𝑣𝑦

𝜕𝑦
= −𝑝. (17)

壁に働く応力は 𝜎𝑖𝑘𝑛𝑘 . 𝑛𝑘 は壁の法線ベクトル成分で

𝑦 = 0の壁で𝒏 = (0, 1), (18)
𝑦 = 𝐻の壁で𝒏 = (0,−1). (19)

𝑦 = 0の壁では, 𝑛𝑘 = (0, 1, 0) なので
応力法線成分𝜎𝑦𝑘𝑛𝑘 = 𝜎𝑦𝑦 = −𝑝, (20)

応力接線成分𝜎𝑥𝑘𝑛𝑘 = 𝜎𝑥𝑦 = 𝜂
𝑈

𝐻
. (21)

𝑦 = 𝐻 の壁では, 𝑛𝑘 = (0,−1, 0) なので
応力法線成分𝜎𝑦𝑘𝑛𝑘 = −𝜎𝑦𝑦 = 𝑝, (22)

応力接線成分𝜎𝑥𝑘𝑛𝑘 = −𝜎𝑥𝑦 = −𝜂𝑈
𝐻
. (23)

7.2.3エネルギー収支

もともと運動エネルギーの式は

𝜕

𝜕𝑡

(
1
2
𝜌𝑣2

𝑥

)
+ 𝜕

𝜕𝑥
(𝑣𝑥 𝑝) +

𝜕

𝜕𝑦

(
−𝜂𝑣𝑥

𝜕𝑣𝑥
𝜕𝑦

)
= −𝜂

(
𝜕𝑣𝑥
𝜕𝑦

)2
. (24)

今の問題では
𝜕

𝜕𝑦

(
−𝜂𝑣𝑥

𝜕𝑣𝑥
𝜕𝑦

)
= −𝜂

(
𝜕𝑣𝑥
𝜕𝑦

)2
. (25)

エネルギー収支の様子を表した模式図を図 2に示す.

7.2.4運動量収支

運動方程式の流束形式において 𝑝 が定数ということを使うと,
𝜕

𝜕𝑡
(𝜌𝑣𝑥) =

𝜕

𝜕𝑦

(
𝜂
𝜕𝑣𝑥
𝜕𝑦

)
. (26)

今の問題では

𝜕

𝜕𝑦

(
𝜂
𝜕𝑣𝑥
𝜕𝑦

)
= 0. (27)

運動量収支の様子を表した模式図を図 3に示す.
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図 2: クエット流におけるエネルギー収支.

図 3: クエット流における運動量収支.
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7.3 2次元ポアゾイユ流
以下の状況を考える (2次元ポアゾイユ流).

• 2枚の平行平板に挟まれた 2次元領域を考える. 板の間隔を 2𝑑 とする.

• 平板に平行に 𝑥 軸をとり,平板に垂直に 𝑦軸をとる (図 4).

• 2次元領域中に非圧縮流体が存在

• 𝑥 方向には一定の圧力勾配 𝛼がかかっている.

• 板における流体速度は 0 (𝑣𝑥 = 0(𝑦 = ±𝑑))

• 定常流

図 4: 2次元ポアゾイユ流を考える系の設定.

7.3.1速度場

ポアソン方程式は

𝜕2𝑣𝑥

𝜕𝑦2 = −𝛼
𝜂
, 𝛼 ≡ −𝜕 𝑝

𝜕𝑥
. (28)

これを積分して境界条件 (壁で 𝑣𝑥 = 0)を適用すると,速度分布が

𝑣𝑥 (𝑦) = − 𝛼

2𝜂
𝑦2 + 𝛼

2𝜂
𝑑2 =

𝛼

2𝜂
(𝑑2 − 𝑦2) (29)

と得られる. 流速分布は図 5.
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図 5: 2次元ポアゾイユ流の流れ. 𝛼 = 10.0, 𝜂 = 10.0の場合.

7.4円管の中の流れ
半径 𝑎の円管を通る定常流を考える. 管は静止しており,圧力勾配で流れを引き起
こす. 流れは管の中心軸に関して対称. 円筒座標 (𝑟, 𝜃, 𝑧)を使って考える. 境界条
件は

𝑣𝑧 = 𝑣𝜃 = 𝑣𝑟 = 0 𝑎𝑡 𝑟 = 𝑎, (30)
𝑣𝑧 = (有限 ) 𝑎𝑡 𝑟 = 0. (31)

一定の圧力勾配が存在するので 𝛼は定数.

- grad p

図 6: 円管の中の流れ

7.4.1流れ場

ポアソン方程式は

1
𝑟

𝑑

𝑑𝑟

(
𝑟
𝜕𝑣𝑧
𝜕𝑟

)
= −𝛼

𝜂
. (32)

これを積分すると

𝑣𝑧 (𝑟) = − 𝛼

4𝜂
𝑟2 + 𝐴 log 𝑟 + 𝐵. (33)
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図 7: 円管の中の流れを考える座標系

𝐴, 𝐵 は積分定数. 境界条件から決定する. 𝑟 = 0 で速度有限なので 𝐴 = 0. 更に,
𝑟 = 𝑎で 𝑣𝑧 = 0の条件から

𝐵 =
𝛼

4𝜂
𝑎2. (34)

よって,速度分布は

𝑣𝑧 (𝑟) = − 𝛼

4𝜂
𝑟2 + 𝑎2 =

𝛼

4𝜂
(𝑎2 − 𝑟2). (35)

7.4.2流量

管を通る流量は

𝑄 =
∫ 2𝜋

0

∫ 𝑎

0
𝑣𝑧𝑟𝑑𝜃𝑑𝑟 = 2𝜋

∫ 𝑎

0
𝑣𝑧𝑟𝑑𝑟 [m3 sec−1] (36)

=
𝛼𝜋

2𝜂

∫ 𝑎

0
(𝑎2𝑟 − 𝑟3)𝑑𝑟 = 𝜋𝑎4𝛼

8𝜂
= −𝜋𝑎4

8𝜂
𝑑 𝑝

𝑑𝑥
. (37)

7.5振動平板による流れ
この問題は非定常な流れの例である. 以下の状況を考える.

• 無限に広い平板が無限い広がっている密度一定の粘性流体を考える.

• 平板は自分自身に平行に単振動している.

• 平板の振動方向に 𝑥 軸をとり,平板自身は 𝑥𝑦 平面内で運動するものとする.
これによって引き起こされる流体の運動は 𝑥 軸に平行となる.

• 𝑥 軸方向には物理量が変化しないことを仮定する.
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運動方程式の 𝑥 成分, 𝑦成分は以下のようになる.

𝜌
𝜕𝑣𝑥
𝜕𝑡

= 𝜂
𝜕2𝑣𝑥

𝜕𝑦2 , (38)

𝜌
𝜕𝑣𝑦

𝜕𝑡
= −𝜕 𝑝

𝜕𝑦
+ 𝜂

𝜕2𝑣𝑦

𝜕𝑦2 . (39)

連続の式は

𝜕𝑣𝑦

𝜕𝑦
= 0. (40)

境界条件は

𝑣𝑥 → 0 for 𝑦 → ∞, (41)
𝑣𝑥 = 𝑈 cos𝜔𝑡 at 𝑦 = 0, (42)
𝑣𝑦 → 0 for 𝑦 → ∞, (43)
𝑣𝑦 = 0 at 𝑦 = 0. (44)

連続の式から 𝑣𝑦 は 𝑦によらない. よって境界条件を考慮すると

𝑣𝑦 = 0. (45)

これより,運動方程式の 𝑦成分から

0 =
𝜕 𝑝

𝜕𝑦
(46)

となる.

y

x

U cos ωt

図 8: 振動平板による流れ.

7.5.1流れ場

物理量を複素数に拡張して計算する. 境界条件は

𝑣𝑥 = 𝑈𝑒𝑖𝜔𝑡 𝑎𝑡 𝑦 = 0. (47)

境界条件の形から 𝑣𝑥 として

𝑣𝑥 = 𝑓 (𝑦)𝑒𝑖𝜔𝑡 (48)
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という形を考える. これを (38)に代入すると

𝜕2𝑓

𝜕𝑦2 =
𝑖𝜌𝜔

𝜂
𝑓 (𝑦). (49)

よって,一般解は以下のように書ける.

𝑓 (𝑦) = 𝐴𝑒𝜆𝑦 + 𝐵𝑒−𝜆𝑦 . (50)

ただし,

𝜆 ≡
(
𝑖𝜌𝜔

𝜂

)1/2
= (1 + 𝑖)

(
𝜌𝜔

2𝜂

)1/2
= (1 + 𝑖)𝑙, (51)

𝑙 ≡
(
𝜌𝜔

2𝜂

)1/2
(52)

とおいた. よって,

𝑣𝑥 =
(
𝐴𝑒𝜆𝑦 + 𝐵𝑒−𝜆𝑦

)
𝑒𝑖𝜔𝑡 . (53)

境界条件 𝑣𝑥 → 0 (𝑦 → ∞)を使うと 𝐴 = 0. 更に,境界条件 𝑣𝑥 (𝑦 = 0) = 𝑈𝑒𝑖𝜔𝑡 を使
うと 𝐵 = 𝑈 が得られる. 以上より,実部を取り出すと以下が得られる.

𝑣𝑥 = ℜ
[
𝑈𝑒−𝜆𝑦𝑒𝑖𝜔𝑡

]
= 𝑈𝑒−𝑙𝑦 cos(𝜔𝑡 − 𝑙𝑦). (54)

これは 𝑦方向に伝わる減衰性の正弦波である. 位相速度は

𝑐 =
𝜔

𝑙
=

𝜔(
𝜌𝜔
2𝜂

)1/2 =

(
2𝜂𝜔
𝜌

)1/2
. (55)

波数も減衰定数も 𝑙 =
(
𝜔
2𝜈
)1/2. したがって, 1波長進む間に振幅は 𝑒−2𝜋 倍になる.

7.5.2境界層の厚さ

振幅が 1/𝑒倍に減衰する距離は

𝛿 =
1
𝑙
=

(
2𝜂
𝜌𝜔

)1/2
. (56)

平板の振動によって流体は動かされるが,その動く範囲はだいたい 𝛿の厚さの層に
限られている. すなわち, 振動平板には厚さ 𝛿 の境界層 (boundary layer) が付随す
ると考えられる. 境界層の厚さは, 粘性が小さいほど薄くなる. 平板の振動数が大
きいほど薄くなる.
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