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Section 3.

3. How planetary magnetic fields are generated

3.1 Fundamentals of MHD and Maxwell’s equations
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Pre-Maxwell equations 1.

Maxwell’s equations are the basis of electromagnetic theory.
Foundation of dynamo theory. They are (3.1.1)-(3.1.4).

∇× E = −∂B
∂t
, ∇× B = µj +

[
1

c2

∂E

∂t

]
(3.1.1, 3.1.2)

(3.1.1) is the differential form of Faraday’s law of induction. If the
magnetic field varies with time an electric field is produced. In an
electrically conducting body, electric field drives a current. Basis of
dynamo action.
(3.1.2) is Ampère’s law, which relates the electric current to the
magnetic field it produces.
Maxwell added the term in red, but it is not needed in MHD,
because fluid flows are much slower than the speed of light.
E electric field, B the magnetic field, j is the current density, µ is
the permeability.
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Pre-Maxwell equations 2.

∇ · B = 0, ∇ · E =
ρc

ε
(3.1.3, 3.1.4)

(3.1.3) expresses that there are no magnetic monopoles.

(3.1.4) says that electric field is generated by charges. However,
we eliminate E in MHD.

E electric field, B the magnetic field,

ρc is the charge density, ε is the permittivity.

These equations are valid in a frame at rest.
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Ohm’s law

In a moving frame E must be replaced by E + u× B while j stays
the same. So in MHD Ohm’s law is

j = σ(E + u× B). (3.1.5)

The SI unit of electrical conductivity is Siemens/metre.
The term u× B is critical. Flow interacting with magnetic field
generates current, which in turn gives field. With the right
configuration, flow can sustain field.
Define magnetic diffusivity

η =
1

µσ
, (3.1.6)

dimensions metre2/second.
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Induction equation

Dividing Ohm’s law (3.1.5) by σ and taking the curl

∇× (
j

σ
) = ∇×E +∇× (u×B) = −∂B

∂t
+∇× (u×B), (3.1.7)

and using (3.1.2) to eliminate j,

∂B

∂t
= ∇× (u× B)−∇× η(∇× B), (3.1.8)

remembering (3.1.6). (3.1.8) is the induction equation.

(3.1) Fundamentals of MHD and Maxwell’s equations 6/71



Alternative forms of the induction equation

If the conductivity is constant we can use the vector identity
curl curl = grad div -del2

and (3.1.8) to write the constant conductivity induction equation
as

∂B

∂t
= ∇× (u× B) + η∇2B. (3.1.9)

An alternative form of the constant diffusivity induction equation
for incompressible flow, ∇ · u = 0 is

∂B

∂t
+ u · ∇B = B · ∇u + η∇2B. (3.1.10)
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Magnetic diffusion

If fluid velocity is zero

∂B

∂t
= η∇2B. (3.1.11)

This is diffusion equation, so if field is zero at infinity, it just
diffuses away. Otherwise it comes to a uniform value.
Timescale: B = (B0 sin kx + B1, 0, 0) in Cartesian coordinates at
t = 0, field evolves as

B = (B0 sin kx exp(−ηk2t) + B1, 0, 0) (3.1.12)

so e-folding time is 1/k2η. If k = π/L, e-folding time is L2/π2η.
η ≈ 1 m2/s in the Earth’s core. If L is ten metres, field decays by a
factor e in about 10 seconds. L = 3.5× 106 metres, time is 20,000
years.
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Perfect Conductor

The induction equation is

∂B

∂t
= ∇× (u× B), (3.1.13)

in the zero diffusion limit. Frozen flux limit. The flux through a
closed curve C in the fluid, enclosing area A, is∫

A
B · ds.

Alfvén’s theorem says flux through any closed loop C is constant
as the loop moves with the fluid.
Note that the size of the loop varies in time. If it shrinks, this
means the field strength must be increasing, since magnetic flux =
area times field strength.
Stretching therefore increases field intensity. Stretching is key to
dynamo action.
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Magnetic Reynolds number

Non-dimensionalise induction equation. We choose typical length
scale L∗ and a typical fluid velocity U∗. Introduce scaled ˜
variables

t =
L∗
U∗

t̃, x = L∗x̃, u = U∗ũ (3.1.14)

so that ∇ = ∇̃/L∗, and (3.1.9) becomes

∂B

∂ t̃
= ∇̃×(ũ×B)+Rm−1∇̃2B, Rm =

U∗L∗
η

, (3.1.15, 3.1.16)

Rm being the dimensionless magnetic Reynolds number.
Large Rm means induction dominates over diffusion. In
astrophysics and geophysics Rm is almost always large, but in
laboratory experiments it is usually small, though values up to
∼ 50 can be reached in large liquid sodium facilities.
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Flux expulsion

y

0 x d
t=0.0 t=0.5 t=2.0 t=20.0

An imposed flow that resembles convection rolls

u = (−U sin
πx

d
cos

πy

d
,U cos

πx

d
sin

πy

d
, 0) (3.1.17)

is imposed. The induction equation

∂B

∂t
= ∇× (u× B) + Rm−1∇2B, (3.1.18)

with Rm = 1000 is solved numerically.
The field is initially vertical, and the field at multiples of the
turn-over time d/U is shown. An initially uniform field stirred by
convection quickly expels the magnetic field out of the roll.
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Stretch Twist Fold dynamo

A loop of flux is first stretched to twice its length, reducing
cross-section by half. By Alfvéns theorem, the field strength must
double. Now twist the loop to get to (b), and then fold to get to
(c). Apply small diffusion at X to reconnect. We have doubled the
total flux.
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3.2 Kinematic dynamo problem
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Kinematic Dynamo problem

Velocity u is a given function of space and possibly time. Dynamic,
or self-consistent, dynamo problem is when u is solved using the
momentum equation. In kinematic dynamos, only the induction
equation (3.1.9) is solved.

Kinematic dynamo problem linear in B. If u independent of time,

B = B0(x , y , z)ept , B0 → 0 as x→∞. (3.2.1)

Usually infinite set of eigenmodes B0 each with a complex
eigenvalue

p = σ + iω. (3.2.2)

σ is the growth rate, and ω the frequency. If one or more modes
have σ positive, we have a dynamo. If ω = 0, steady dynamo. If
ω 6= 0 growing dynamo waves.
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Anti-Dynamo theorem 1.

In Cartesian coordinates (x , y , z) no field independent of z which
vanishes at infinity can be maintained by dynamo action. So its
impossible to generate a 2D dynamo field.
Because ∇ · B = 0, any 2D field can be written

B = Bẑ +∇× Aẑ . (3.2.3)

Insert this into the induction equation (3.1.10) and we get two
equations

∂A

∂t
+ (u · ∇)A = η∇2A, (3.2.4)

∂B

∂t
+ (u · ∇)B = η∇2B + BH · ∇uz . (3.2.5)
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Anti-Dynamo theorem 1 continued

Now multiply (3.2.4) by A and integrate over the whole volume,

∂

∂t

∫
1

2
A2 dv +

∫
∇ · 1

2
uA2 dv = −η

∫
(∇A)2 dv . (3.2.6)

Divergence term vanishes, because the fields is small at large
distance.

The term on the right is negative definite, so the integral of A2

continually decays.

It will only stop decaying if A is constant, in which case there is no
field.
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Decay of B

Once A has decayed to zero, BH is zero, so there is no source term
in (3.2.5). We can then apply the same argument to show B
decays to zero. This shows that no nontrivial field 2D can be
maintained as a steady (or oscillatory) dynamo.

Note that if A has very long wavelength components, it may take a
very long time for A to decay to zero, and in that time B might
grow quite large as a result of the driving by the last term in
(3.2.5). But ultimately it must decay.
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Anti-Dynamo theorem 2

No dynamo can be maintained by a planar flow

u = (ux(x , y , z , t), uy (x , y , z , t), 0)

No restriction is placed on whether the field is 2D or not in this
theorem.

The z-component of (3.1.10) is

∂Bz

∂t
+ u · ∇Bz = η∇2Bz , (3.2.7)

because the B · ∇uz is zero because uz is zero. Multiplying (3.2.7)
by Bz and integrating, again the advection term gives a surface
integral vanishing at infinity, and so Bz decays.
If Bz = 0, then

∂Bx

∂x
+
∂By

∂y
= 0. (3.2.8)
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Anti-Dynamo theorem 2 continued

which means

Bx =
∂A

∂y
, By = −∂A

∂x
(3.2.9)

for some A, and then the z-component of the curl of the induction
equation gives

∂∇2
HA

∂t
+∇2

H(u · ∇A) = η∇2
H∇2A, ∇2

H =
∂2

∂x2
+

∂2

∂y2
. (3.2.10)

Fourier transform in x and y , the ∇2
H = k2

x + k2
y which then can be

cancelled out, so (3.2.10) is just (3.2.4) again, which on
multiplying through by A leads to the decay of A again. So the
whole field decays if the flow is planar.
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Axisymmetric field decomposition

An axisymmetric field and flow can be decomposed into

B = Bφ̂+BP = Bφ̂+∇× Aφ̂, u = sΩφ̂+uP = sΩφ̂+∇× ψ
s
φ̂,

s = r sin θ. (3.2.11)

The induction equation now becomes quite simple,

∂A

∂t
+

1

s
(uP · ∇)(sA) = η(∇2 − 1

s2
)A, (3.2.12)

∂B

∂t
+ s(uP · ∇)(

B

s
) = η(∇2 − 1

s2
)B + sBP · ∇Ω. (3.2.13)

Gives important insight into the dynamo process.
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Anti-Dynamo theorem 3, Cowling’s theorem

An axisymmetric magnetic field vanishing at infinity cannot be
maintained by dynamo action.
Polar coordinate version of theorem 1. Multiplying (3.2.12) by s2A
and integrating, and eliminating the divergence terms by converting
them to surface integrals which vanish at infinity, we get

∂

∂t

∫
1

2
s2A2 dv = −η

∫
|∇(sA)|2 dv (3.2.14)

which shows that sA decays.

Note that sA = constant would give diverging A at s = 0 which is
not allowed.
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Cowling’s theorem continued

Once A has decayed, BP = 0 in (3.2.14), and now multiplying
(3.2.14) by B/s2 gives

∂

∂t

∫
1

2
s−2B2 dv = −η

∫
|∇(

B

s
)|2 dv (3.2.15)

and since we don’t allow B proportional to s, which doesn’t vanish
at infinity, this shows that B must decay also. So there can be no
steady axisymmetric dynamo.

Note this theorem disallows axisymmetric B, not axisymmetric u.
The Ponomarenko dynamo and the Dudley and James dynamos
(see section 2 below) are working dynamos with axisymmetric u
but with nonaxisymmetric B.
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Anti-Dynamo theorem 4, Toroidal flow theorem

A purely toroidal flow, that is one with u = ∇×T r for some scalar
function T , cannot maintain a dynamo. Note that this means that
there is no radial motion, ur = 0.
This is the polar coordinate version of theorem 2. First we show
the radial component of field decays, because

∂

∂t
(r · B) + u · ∇(r · B) = η∇2(r · B), (3.2.16)

so multiplying through by (r · B) and integrating does the job.
Then a similar argument to that used to prove theorem 2 shows
that the toroidal field has no source term and so decays. For
details see Gilbert (2003) p 380. It is not necessary to assume
either flow or field is axisymmetric for this theorem.
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3.3 Working kinematic dynamos
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Kinematic Dynamos

We look at dynamos with a prescribed velocity field, mostly a
time-independent velocity

Ponomarenko dynamo: simplest known kinematic dynamo, model
for Riga dynamo experiment

G.O.Roberts dynamo: model for the Karlsruhe experiment. Also
has roll geometry, and a field on scale larger than roll size

Spherical dynamos: the Dudley-James dynamo.
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Ponomarenko Dynamo

(a) Ponomarenko flow,

u = sΩφ̂ + U ẑ, s < a; u = 0, s > a (3.3.1)

Solid body screw motion inside cylinder s = a.

(b) Riga dynamo experiment configuration
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Ponomarenko Dynamo 2.

Flow has helicity,

H = u · ∇ × u = u · ζ = U
1

s

∂

∂s
s2Ω = 2UΩ. (3.3.2)

Discontinuity of u at s = a provides strong shearing.
Evades planar motion anti-dynamo theorem through U.

Rm =
a
√

U2 + a2Ω2

η

based on maximum velocity.
Seek nonaxisymmetric field of form

B = b(s) exp[(s + iω)t + imφ+ ikz ] (3.3.3)

thus evading Cowling’s theorem. Induction equation, (3.1.10),

∂B

∂t
+ u · ∇B = B · ∇u + η∇2B.
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Ponomarenko Dynamo 3. Equations

(u · ∇)B = (ikU + imΩ)B− ΩBφŝ + ΩBs φ̂, (3.3.4)

(B · ∇)u = −ΩBφŝ + ΩBs φ̂, (3.3.5)

so

p2bs = ∆mbs −
2im

s2
bφ, p2bφ = ∆mbφ +

2im

s2
bs , (3.3.6, 3.3.7)

where

∆m =
1

s

∂

∂s
s
∂

∂s
− 1

s2
− m2

s2

Inside, s < a, p = pi , ηp
2
i = σ + iω + imΩ + ikU + ηk2,

Outside, s > a, p = pe , ηp2
e = σ + iω + ηk2.

Defining b± = bs ± ibφ,

p2b± = ∆m±1b±. (3.3.8)
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Ponomarenko Dynamo 4. Solutions

Solutions are

b± = A±
Im±1(pi s)

Im±1(pia)
, s < a, A±

Km±1(pi s)

Km±1(pia)
, s > a. (3.3.9)

Im and Km are the modified Bessel functions (like sinh and cosh)
that are zero at s = 0 and zero as s →∞ respectively.
With this choice, the fields are continuous at s = a. Also need Ez

continuous (1.4.8d), so η(∇× B)z − uφBs has to be continuous,
using (3.1.5), giving

η

(
∂bφ
∂s
|s→a+ −

∂bφ
∂s
|s→a−

)
= aΩbs(a) (3.3.10)

writing the jump as [.],

2η

[
∂b±
∂s

]
= ±iaΩ(b+(a) + b−(a)). (3.3.11)
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Ponomarenko Dynamo 5. Solutions

Defining

S± =
pi I
′
m±1(pia)

Im±1(pia)
−

peK
′
m±1(pia)

Km±1(pea)
(3.3.12)

the dispersion relation is

2ηS+S− = iaΩ(S+ − S−). (3.3.13)

Needs a simple MATLAB code to sort it out.
Non-dimensionalise on length scale a and timescale a2/η and
dimensionless parameters are growth-rate s/Ω, frequency ω/Ω,
pitch of spiral χ = U/aΩ, ka and m. The diffusion coefficient
η/a2Ω = (1 + χ2)1/2Rm−1.
For marginal stability set s = 0. For given χ, ka and m adjust Rm
and ω until real and imaginary parts of
2ηS+S− − iaΩ(S+ − S−) = 0. Minimise Rm over m and ka to get
the critical mode, and over χ to get the optimum pitch angle.
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Ponomarenko Dynamo 6. Results

When all this is done, we find Rmcrit = 17.7221, ka = −0.3875,
m = 1, a2ω/η = −0.4103 and χ = 1.3141. Poloidal and toroidal
flow similar.
This is a low value of Rm, which motivated the Riga dynamo
experiment. Magnetic field is strongest near s = a where it is
generated by shear.
At large Rm, there is a significant simplification, because then
mΩ + kU is small, so pe = pi and the ηk2 terms are small. Bessel
functions have asymptotic simplifications at large argument.
Fastest growing modes given by

|m| = (6(1 + χ−2))−3/4

(
a2Ω

2η

)1/2

, s = 6−3/2Ω(1 + χ−2)−1/2.

(3.3.14)
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Ponomarenko Dynamo 7. Results

Magnetic field for the Ponomarenko dynamo at large Rm. Surface
of constant B shows spiralling field following flow spiral, and
located near the discontinuity.
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G.O.Roberts dynamo

The Ponomarenko dynamo has a single roll, and the field at low
Rm is on scale of the roll, smaller at high Rm.

G.O Roberts dynamo has a collection of rolls and field can be
coherent across many rolls.

Special case of ABC flows (Arno’ld, Beltrami, Childress)

u = (C sin z +B cos y ,A sin x +C cos z ,B sin y +A cos x) (3.3.15)

with A = B = 1, C = 0. These flows have ∇× u = u, so vorticity
= velocity.

Clearly ABC flows have helicity.
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G.O.Roberts dynamo 2.

Flow is two dimensional, independent of z , but has a z-component.

u = (cos y , sin x , sin y + cos x). (3.3.16)

Avoids the planar antidynamo theorem.
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G.O.Roberts dynamo 3.

u =

(
∂ψ

∂y
,−∂ψ

∂x
, ψ

)
, ψ = sin y + cos x . (3.3.17)

Magnetic field has to be z-dependent (Anti-dynamo theorem 1)

B = b(x , y) exp(pt + ikz). (3.3.18)

b(x , y) is periodic in x and y , but it has a mean part independent
of x and y which spirals in the z-direction.
To solve the problem, Roberts inserted the form of B into the
induction equation, using a double Fourier series expansion of
b(x , y).
The coefficients then form a linear matrix eigenvalue problem for p.
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G.O.Roberts dynamo 4. Results

p

k
Growth rate p as a function of z wavenumber, k for various
ε = Rm−1.
Solid lines: G.O. Roberts numerical results. Dashed lines, A.M.
Soward’s asymptotic large Rm theory.
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Large Rm G.O.Roberts dynamo

Figure rotated through 45◦. At large Rm, generated field is
expelled into boundary layers.
This gives enhanced diffusion, leading to lower growth rates and
ulitimately to decay.
p → 0 as Rm→∞ means dynamo is slow.
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Spherical dynamo models

Following Bullard and Gellman, 1954, velocity for kinematic
spherical dynamos written

u =
∑

i

tml + sm
l (3.3.19)

where tml and sm
l are the toroidal and poloidal components

tml = ∇× r̂tm
l (r , t)Y m

l (θ, φ), sm
l = ∇×∇× r̂sm

l (r , t)Y m
l (θ, φ)
(3.3.20)

where −l ≤ m ≤ l .
Bullard and Gellman used u = εt0

1 + s2
2 with t0

1 (r) = r2(1− r),
s2

2 (r) = r3(1− r)2. In their original calculations, they found
dynamo action, but subsequent high resolution computations
showed they were not dynamos. Warning: inadequate resolution
can lead to bogus dynamos!
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Dudley and James dynamos

Dudley and James looked at 3 models, using the notation of
(3.3.20),

u = t0
2 +εs0

2, (a); u = t0
1 +εs0

2, (b); u = t0
1 +εs0

1, (c) (3.3.21)

with
t0
1 = s0

1 = r sinπr , t0
2 = s0

2 = r2 sinπr .

All steady axisymmetric flows.
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Dudley and James dynamos 2.

t components give azimuthal flow only, s components give
meridional flow.

All three models give dynamo action. Since the flow is
axisymmetric, the field has exp imφ dependence, and m = 1 is
preferred.

(a) with ε = 0.14 has Rmcrit ≈ 54 (steady). (b) with ε = 0.13 has
Rmcrit ≈ 95 (oscillatory). (c) with ε = 0.17 has Rmcrit ≈ 155
(oscillatory).

In all cases, the toroidal and meridional flows are of similar
magnitude. Field is basically an equatorial dipole, which in
oscillatory cases rotates in time.
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3.4 Field generation in geodynamo models

(3.4) Field generation in geodynamo models 41/71



Field generation in numerical dynamos

  -0.18
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   16.0

   48.0

   80.0

E = 5× 10−5, Pr = Pm = 1, Ra = 400 with stress-free
boundaries.
Left: radial magnetic field at the CMB. Right: radial velocity at
r = ri + 0.8.
This is a standard dipolar solution which persists for all time. Flow
has the columns predicted by linear theory, though they are now
time-dependent.
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Flow in the convection columns

Anticyclone Cyclone Anticyclone Cyclone

↑
z

Equatorial
plane

φ→

Red is primary flow, which convects the heat out. Blue is
secondary flow which provides helicity u · ζ, where ζ is the
vorticity. Helicity is important for dynamo action.
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Bφ from dynamo model

Azimuthal average of Bφ for a
moderately supercritical dynamo
Antisymmetric about the
equator, so Bφ = 0 on the
equator. Note Bz > 0 near
tangent cylinder, usually gives
Bφ > 0 in N. hemisphere.
Field generally increases with s
near ICB.
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Mechanism for generating Bz from Bφ

Start with Bφ > 0 in northern hemisphere where uz > 0 in
anticyclones, A, uz < 0 in cyclones, C .

↓ ↑ ↓ ↑
>

>

>

>

∨ ∧ ∧ ∨ ∨ ∧ ∧ ∨

φ →

φ →

z
↑

s
↓

ICB
↑

CMB
↓

Bz > 0 Bz < 0 Bz > 0

C A C A

Bz > 0

Bz < 0

Bz > 0

Green magnetic field line initially
in φ-direction is displaced parallel
to rotation axis z by secondary
flow.
Primary flow sweeps positive Bz

towards the ICB, negative Bz

towards the CMB.

Net effect is to create positive Bz inside, negative Bz outside, just
as in a dipolar field. In S. hemisphere Bφ and uz are reversed, so
effect is same.
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Mechanism for generating Bφ from Bz

>

∧∨

<

∨∧

>

∧∨

>

∨∧

<

∧∨

>

∨∧∧ ∧ ∧

∧ ∧ ∧

∧ ∧ ∧

φ →

z
↑

Bφ<0 Bφ>0 Bφ<0

Bφ>0 Bφ<0 Bφ>0

A C ∧ ∨ ∨ ∧

Bφ>0

Bφ<0 Bφ<0
ICB

s

↓

φ →

A C

Northern Hemisphere. uz > 0 in anticyclones, A, uz < 0 in
cyclones, C .
Left: uφ flow resulting from uz profile stretches out red positive Bz

to give Bφ.
Right: constant z section in Northern Hemisphere viewed from
above.
Positive Bφ is moved outward in radius, negative Bφ moved inward
in radius by the vortex circulations. This reinforces the original Bφ
configuration and allows the magnetic field to grow.
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3.5 Fast and slow dynamos
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Fast and Slow dynamos

If magnetic diffusion time � turn-over time, (3.1.10) becomes

∂B

∂t
+ u · ∇B = B · ∇u + ε∇2B. (3.5.1)

where ε = Rm−1 is small. Time scaled on turnover time L/U.
For steady flow B ∼ eσt , and if γ = Re(σ) flow is a fast dynamo if

γ0 = lim
ε→0

γ(ε) > 0. (3.5.2)

Flow is a slow dynamo if

γ0 = lim
ε→0

γ(ε) ≤ 0. (3.5.3)

Fast dynamos grow on the turnover time (months in the Sun) not
the magnetic diffusion time (millions of years in the Sun).
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ABC flow

Typical Poincaré section shows chaotic regions and ordered
regions. Ordered regions called KAM regions, or KAM tori.
‘Normal’ in chaotic ODEs. The ABC = 1 flow is unusual in having
rather large KAM regions and small chaotic regions.
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ABC dynamo results

Dynamo growth rate γ against log10 Rm.
Because the chaotic regions which give stretching are small, quite
difficult to show its a fast dynamo numerically.
However, γ seems to be increasing gradually rather than
decreasing at large Rm.
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Stretching properties

Take a point a and a small vector v origin at a. Now integrate the
particle path ODE’s with initial conditions x1 = a and x2 = a + v,
and monitor d = |x1 − x2|.
If stretching is occuring, d will grow exponentially.
Liapunov exponent is

Λ(a) = max
v

lim
t→∞

sup
ln d

t
(3.5.4)

The maximum Liapunov exponent is found by taking the
supremum over all a.
Can be computed, but expensive! A practical definition of chaos is
that the Liapunov exponent is positive. In a given chaotic region,
Λ is usually the same, but it is zero in KAM regions.
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Time dependent flow fields

Rather than have a fully 3D steady flow field, like A = B = C = 1,
we can choose a 2D flow but make it a time-dependent flow. Field
still has exp ikz dependence, which makes numerics a lot easier.

Galloway-Proctor CP flow:

u = ∇×(ψ(x , y , t)ẑ)+γψ(x , y , t)ẑ, ψ = sin(y+sin t)+cos(x+cos t)
(3.5.5)

Very like the G.O. Roberts flow, except the stagnation point
pattern rotates round in a circle.

Also an LP flow, with ψ = sin(y + cos t) + cos(x + cos t).

Flow is now non-integrable, and has positive Liapunov exponents.
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Galloway-Proctor dynamo

CP flow
Left: Liapunov exponents: blue regions have little or no stretching,
green/red has order one stretching
Right: snapshot of the normal field Bz . Note the good correlation
between strong field and strong stretching.
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Galloway-Proctor dynamo results

CP flow.
Growth rate against wavenumber k , exp ikz , for Rm = 800,
Rm = 2, 000 and Rm = 10, 000.

Note that the growth rate continues to increase as Rm is
increased, unlike the G.O. Roberts flow results.
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3.6 Mean field dynamo theory
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About Mean Field Dynamo Theory

Subject divides into two areas

(i) Underlying theory of MFDT, conditions for its validity, its
relationship to turbulence theory and its extension to include
nonlinear effects

(ii) The solutions of MFDT equations and the new types of
dynamos they create: dynamo waves, αω dynamos and α2

dynamos.

There is surprisingly little interaction between these two activities.
Vastly more papers have been written on (ii), almost all accepting
the MFDT equations as a useful model.
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Mean and Fluctuating parts. 1.

Basic idea is to split the magnetic field and the flow into mean and
fluctuating parts,

B = B + B′, u = u + u′ (3.6.1)

Reynolds averaging rules: assume a linear averaging process

B1 + B2 = B1 + B2, u1 + u2 = u1 + u2 (3.6.2)

and once its averaged it stays averaged, so

B = B, u = u, (3.6.3)

So averaging
B′ = u′ = 0. (3.6.4)
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Mean and Fluctuating parts. 2.

Also, assume averaging commutes with differentiating, so

∂B

∂t
=

∂

∂t
B, ∇B = ∇B. (3.6.5)

Now we average the induction equation

∂B

∂t
= ∇× (u× B) + η∇2B,

Using the Reynolds averaging rules

∂B

∂t
= ∇× (u× B) + η∇2B. (3.6.6)

The interesting term is (u× B).

u× B = (u + u′)× (B + B′) = u× B + u× B′ + u′ × B + u′ × B′
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Mean Field Induction equation

So we have

∂B

∂t
= ∇× (u× B) +∇× E + η∇2B, E = u′ × B′. (3.6.7)

E is called the mean e.m.f. and it is a new term in the induction
equation. We usually think of the primed quantities as being small
scale turbulent fluctuations, and this new term comes about
because the average mean e.m.f. can be nonzero if the turbulence
has suitable averaged properties.

No longer does Cowling’s theorem apply! With this new term, we
can have simple axisymmetric dynamos. Not surprisingly, most
authors have included this term in their dynamo work, though
actually it can be hard to justify the new term in astrophysical
applications.
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Evaluation of (u× B)

If we subtract the mean field equation from the full equation,

∂B′

∂t
= ∇×(u×B′)+∇×(u′×B)+∇×G+η∇2B′, G = u′×B′−u′ × B′.

(3.6.8)
This is a linear equation for B′, with a forcing term ∇× (u′ × B).
B′ can therefore be thought of as the turbulent field generated by
the turbulent u′ acting on the mean B. We can therefore plausibly
write

Ei = aijBj + bijk
∂Bj

∂xk
+ · · · . (3.6.9)

where the tensors aij and bijk depend on u′ and u.
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Mean Field Dynamo equations

We don’t know u′ and its unobservable, so we assume aij and bijk

are simple isotropic tensors

aij = α(x)δij , bijk = −β(x)εijk . (3.6.10)

We now have the mean field dynamo theory (MFDT) equations in
usual form,

∂B

∂t
= ∇× (u×B) +∇×αB−∇× (β∇×B) + η∇2B. (3.6.11)

If β is constant, ∇× (β∇× B) = −β∇2B so the β term acts like
an enhanced diffusivity. Even if it isn’t constant, we recall from
(3.1.8) that the term has the same form as the molecular diffusion
term.
We can now justify taking a large diffusion, choosing it to give
agreement with observation.
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Parker loop mechanism

Mean field theory predicts an e.m.f. parallel to the mean magnetic
field.

∂B

∂t
= ∇× (u× B) +∇× αB + ηT∇2B. (3.6.12).

Contrast with u× B perpendicular to the e.m.f. With constant α,
the α-effect predicts growth of field parallel to current µ∇× B.

Recalling that the α-effect depends on helicity, we can picture this
process.
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Parker loop mechanism 2.

A rising twisting element of fluid brings up magnetic field. A loop
of flux is created, which then twists due to helicity. The loop
current is parallel to the original mean field. Poloidal field has been
created out of azimuthal field.

Note that if too much twist, current in opposite direction. First
order smoothing assumes small twist.
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Joy’s law

A sunspot pair is created when an azimuthal loop rises through
solar photosphere. The vertical field impedes convection producing
the spot.

Joy’s law says that sunspot pairs are systematically tilted, with the
leading spot being nearer the equator. Assuming flux was created
as azimuthal flux deep down, suggests that loop has indeed twisted
through a few degrees as it rose.

Provides some evidence of the α-effect at work. Basis of many
solar dynamo models.

(3.6) Mean field dynamo theory 64/71



3.7 Mean field α-effect dynamos
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Axisymmetric mean field dynamos

Mean field spherical dynamo equations with isotropic α are

∂A

∂t
+

1

s
(uP · ∇)(sA) = αB + η(∇2 − 1

s2
)A, (3.7.1)

∂B

∂t
+s(uP ·∇)(

B

s
) = ∇×αBP +η(∇2− 1

s2
)B +sBP ·∇Ω. (3.7.2)

The α-effect term is the source for generating poloidal field from
azimuthal field, as envisaged by Parker, and Babcock & Leighton.

Two ways of generating azimuthal field from poloidal field: the
α-effect or the ω effect. If first dominates, its an α2-dynamo. If
the second its an αω dynamo.

There are also α2ω dynamos where both mechanisms operate.
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The Omega-effect

An initial loop of meridional field threads through the sphere.

Inside of sphere is rotating faster than outside: differential rotation.

The induction term sBP · ∇Ω generates azimuthal field by
stretching. Opposite sign Bφ across equator as in Sun.
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Dynamo waves 1.

Cartesian geometry, independent of y .

B = (−∂A/∂z ,B, ∂A/∂x), u = (−∂ψ/∂z , uy , ∂ψ/∂x),
(3.7.3)

∂A

∂t
+
∂(ψ,A)

∂(x , z)
= αB + η∇2A, (3.7.4)

∂B

∂t
+
∂(ψ,B)

∂(x , z)
=
∂(A, uy )

∂(x , z)
−∇ · (α∇A) + η∇2B. (3.7.5)

Set ψ = 0, α constant, uy = U ′z , a constant shear, ignore α term
in B equation (αω model) and set A = exp(σt + ik · x). Dispersion
relation is

(σ + ηk2)2 = ikxαU ′. (3.7.6)
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Dynamo waves 2.

Giving

σ =
1 + i√

2
(αU ′kx)1/2 − ηk2 (3.7.7)

with suitable choice of signs. This gives growing dynamo waves if
αU ′ term overcomes diffusion.
If the wave is confined to a plane layer, kz = π/d gives the lowest
critical mode, and there a critical value of kx for dynamo action.
The dimensionless combination D = αU ′d3/η2 is called the
dynamo number,and in confined geometry there is a critical D for
onset.
Note fastest growing waves have kz = 0 so propagate
perpendicular to shear direction z . If αU ′ > 0, +ve kx give growing
modes with Im(σ) > 0, so propagate in -ve x-direction. -ve kx has
growing modes with Im(σ) < 0, so waves always propagate in -ve
x-direction. Direction waves travel in depends on sign of αU ′.
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α2 dynamos

Now set ψ = uy = 0, α constant, A = exp(σt + ik · x) to get
dispersion relation

(σ + ηk2)2 = α2k2

σ = ±αk − ηk2 (3.7.8)

which has growing modes with zero frequency. No dynamo waves,
but a steady dynamo results.
In bounded geometry there is a critical α for dynamo action.
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Spherical αω dynamos

Dipolar oscillatory solution of axisymmetric αω-dynamo in a
sphere. (a)-(h) goes through one period. Right meridional field,
left azimuthal field. α = f (r) cos θ, ω = ω(r). B antisymmetric
about equator, A symmetric.
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