| Class | phy_implicit_sdh |
| In: |
phy_implicit/phy_implicit_sdh.F90
|
Note that Japanese and English are described in parallel.
| PhyImplTendency : | 時間変化率の計算 |
| PhyImplEvalRadLFluxA : | 長波フラックス補正 |
| ———— : | ———— |
| PhyImplTendency : | Calculate tendency |
| PhyImplEvalRadLFluxA : | Longwave flux correction |
| Subroutine : | |||
| xyr_RadLFlux(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyz_DTempDt(0:imax-1, 1:jmax, 1:kmax) : | real(DP), intent(in)
| ||
| xy_DSurfTempDt(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xyra_DelRadLFlux(0:imax-1, 1:jmax, 0:kmax, 0:1) : | real(DP), intent(in)
| ||
| xyr_RadLFluxA(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(out)
|
$ t-\Delta t $ における変化率を元に, $ t+Delta t $ の長波フラックス (xyr_RadLFluxA) を算出します.
Evaluate longwave flux at $ t+Delta t $ (xyr_RadLFluxA) from the tendency at $ t-\Delta t $ .
subroutine PhyImplSDHEvalRadLFluxA( xyr_RadLFlux, xyz_DTempDt, xy_DSurfTempDt, xyra_DelRadLFlux, xyr_RadLFluxA )
!
! $ t-\Delta t $ における変化率を元に,
! $ t+\Delta t $ の長波フラックス (xyr_RadLFluxA) を算出します.
!
! Evaluate longwave flux at $ t+\Delta t $ (xyr_RadLFluxA)
! from the tendency at $ t-\Delta t $ .
!
! モジュール引用 ; USE statements
!
! 時刻管理
! Time control
!
use timeset, only: DelTime, TimesetClockStart, TimesetClockStop
! 宣言文 ; Declaration statements
!
implicit none
real(DP), intent(in):: xyr_RadLFlux (0:imax-1, 1:jmax, 0:kmax)
! 長波フラックス.
! Longwave flux
real(DP), intent(in):: xyz_DTempDt (0:imax-1, 1:jmax, 1:kmax)
! $ \DP{T}{t} $ . 温度変化.
! Temperature tendency
real(DP), intent(in):: xy_DSurfTempDt (0:imax-1, 1:jmax)
! 地表面温度変化率.
! Surface temperature tendency
real(DP), intent(in):: xyra_DelRadLFlux (0:imax-1, 1:jmax, 0:kmax, 0:1)
! 長波地表温度変化.
! Surface temperature tendency with longwave
real(DP), intent(out):: xyr_RadLFluxA (0:imax-1, 1:jmax, 0:kmax)
! $ t-\Delta t $ における変化率を元に
! 算出された $ t+\Delta t $ における
! 長波フラックス.
!
! Longwave flux at $ t+\Delta t $
! calculated from the tendency at
! $ t-\Delta t $ .
! 作業変数
! Work variables
!
integer:: k ! 鉛直方向に回る DO ループ用作業変数
! Work variables for DO loop in vertical direction
! 実行文 ; Executable statement
!
! 計算時間計測開始
! Start measurement of computation time
!
call TimesetClockStart( module_name )
! 初期化
! Initialization
!
if ( .not. phy_implicit_sdh_inited ) call PhyImplInit
! $ t+\Delta t $ の長波フラックス (xyr_RadLFluxA) を算出
! Evaluate longwave flux at $ t+\Delta t $ (xyr_RadLFluxA)
!
do k = 0, kmax
xyr_RadLFluxA(:,:,k) = xyr_RadLFlux(:,:,k) + ( xy_DSurfTempDt * xyra_DelRadLFlux(:,:,k,0) + xyz_DTempDt(:,:,1) * xyra_DelRadLFlux(:,:,k,1) ) * 2. * DelTime
end do
! 計算時間計測一時停止
! Pause measurement of computation time
!
call TimesetClockStop( module_name )
end subroutine PhyImplSDHEvalRadLFluxA
| Subroutine : | |||
| FlagSSModel : | logical , intent(in)
| ||
| FlagSSModelSO : | logical , intent(in)
| ||
| xyr_UFlux(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyr_VFlux(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyr_TempFlux(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyrf_QMixFlux(0:imax-1, 1:jmax, 0:kmax, 1:ncmax) : | real(DP), intent(in)
| ||
| xyr_SoilTempFlux(0:imax-1, 1:jmax, 0:kslmax) : | real(DP), intent(in)
| ||
| xyr_RadSFlux(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyr_RadLFlux(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xy_GroundTempFlux(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xy_SurfTemp(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xyz_SoilTemp(0:imax-1, 1:jmax, 1:kslmax) : | real(DP), intent(in)
| ||
| xy_SurfHumidCoef(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xy_SurfCond(0:imax-1, 1:jmax) : | integer, intent(in)
| ||
| xy_SurfHeatCapacity(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xy_SeaIceConc(0:imax-1,1:jmax) : | real(DP), intent(in)
| ||
| xyra_DelRadLFlux(0:imax-1, 1:jmax, 0:kmax, 0:1) : | real(DP), intent(in)
| ||
| xyr_Press(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyz_Exner(0:imax-1, 1:jmax, 1:kmax) : | real(DP), intent(in)
| ||
| xyr_Exner(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyr_VelTransCoef(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyr_TempTransCoef(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyr_QMixTransCoef(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xy_SurfVelTransCoef(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xy_SurfTempTransCoef(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xy_SurfQVapTransCoef(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xyr_SoilTempTransCoef(0:imax-1, 1:jmax, 0:kslmax) : | real(DP), intent(in)
| ||
| xy_SurfSnowB(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xyz_DUDt(0:imax-1, 1:jmax, 1:kmax) : | real(DP), intent(out)
| ||
| xyz_DVDt(0:imax-1, 1:jmax, 1:kmax) : | real(DP), intent(out)
| ||
| xyz_DTempDt(0:imax-1, 1:jmax, 1:kmax) : | real(DP), intent(out)
| ||
| xyzf_DQMixDt(0:imax-1, 1:jmax, 1:kmax, 1:ncmax) : | real(DP), intent(out)
| ||
| xy_DSurfTempDt(0:imax-1, 1:jmax) : | real(DP), intent(out)
| ||
| xyz_DSoilTempDt(0:imax-1, 1:jmax, 1:kslmax) : | real(DP), intent(out)
| ||
| xy_DSoilMoistDt(0:imax-1, 1:jmax) : | real(DP), intent(out)
| ||
| xy_DSurfSnowDt(0:imax-1, 1:jmax) : | real(DP), intent(out)
|
時間変化率の計算を行います.
Calculate tendencies.
subroutine PhyImplSDHTendency( FlagSSModel, FlagSSModelSO, xyr_UFlux, xyr_VFlux, xyr_TempFlux, xyrf_QMixFlux, xyr_SoilTempFlux, xyr_RadSFlux, xyr_RadLFlux, xy_GroundTempFlux, xy_SurfTemp, xyz_SoilTemp, xy_SurfHumidCoef, xy_SurfCond, xy_SurfHeatCapacity, xy_SeaIceConc, xyra_DelRadLFlux, xyr_Press, xyz_Exner, xyr_Exner, xyr_VelTransCoef, xyr_TempTransCoef, xyr_QMixTransCoef, xy_SurfVelTransCoef, xy_SurfTempTransCoef, xy_SurfQVapTransCoef, xyr_SoilTempTransCoef, xy_SurfSnowB, xyz_DUDt, xyz_DVDt, xyz_DTempDt, xyzf_DQMixDt, xy_DSurfTempDt, xyz_DSoilTempDt, xy_DSoilMoistDt, xy_DSurfSnowDt )
!
! 時間変化率の計算を行います.
!
! Calculate tendencies.
!
! モジュール引用 ; USE statements
!
! 座標データ設定
! Axes data settings
!
use axesset, only: r_SSDepth, z_SSDepth ! subsurface grid at midpoint of layer
! 物理定数設定
! Physical constants settings
!
use constants, only: Grav, CpDry, LatentHeat, GasRDry
! $ R $ [J kg-1 K-1].
! 乾燥大気の気体定数.
! Gas constant of air
! 雪と海氷の定数の設定
! Setting constants of snow and sea ice
!
use constants_snowseaice, only: TempCondWater, SeaIceVolHeatCap , SeaIceThermCondCoef, SeaIceThreshold, SeaIceThickness, TempBelowSeaIce
! 時刻管理
! Time control
!
use timeset, only: DelTime, TimeN, TimesetClockStart, TimesetClockStop
!!$ ! 飽和比湿計算
!!$ ! Evaluate saturation specific humidity
!!$ !
!!$#ifdef LIB_SATURATE_NHA1992
!!$ use saturate_nha1992, only: CalcQVapSat, CalcDQVapSatDTemp
!!$#elif LIB_SATURATE_T1930
!!$ use saturate_t1930, only: CalcQVapSat, CalcDQVapSatDTemp
!!$#else
!!$ use saturate_t1930, only: CalcQVapSat, CalcDQVapSatDTemp
!!$#endif
! バケツモデル
! bucket model
!
use Bucket_Model, only: FlagBucketModel, FlagBucketModelSnow
! 地下における熱の鉛直拡散
! Vertical diffusion of heat under the ground
!
use subsurface_diffusion_heat, only: xy_SoilSpecHeat , xy_SoilRho , xy_SoilHeatCap , xy_SoilHeatDiffCoef ! Heat conduction coefficient of soil (J K-1 m-1 s-1)
! 宣言文 ; Declaration statements
!
implicit none
logical , intent(in):: FlagSSModel
! flag for use of subsurface grid
logical , intent(in):: FlagSSModelSO
! flag for use of slab ocean
real(DP), intent(in):: xyr_UFlux (0:imax-1, 1:jmax, 0:kmax)
! 東西風速フラックス.
! Eastward wind flux
real(DP), intent(in):: xyr_VFlux (0:imax-1, 1:jmax, 0:kmax)
! 南北風速フラックス.
! Northward wind flux
real(DP), intent(in):: xyr_TempFlux (0:imax-1, 1:jmax, 0:kmax)
! 温度フラックス.
! Temperature flux
real(DP), intent(in):: xyrf_QMixFlux(0:imax-1, 1:jmax, 0:kmax, 1:ncmax)
! 比湿フラックス.
! Specific humidity flux
real(DP), intent(in):: xyr_SoilTempFlux (0:imax-1, 1:jmax, 0:kslmax)
! 土壌の熱フラックス (W m-2)
! Heat flux in sub-surface soil (W m-2)
real(DP), intent(in):: xyr_RadSFlux (0:imax-1, 1:jmax, 0:kmax)
! 短波 (日射) フラックス.
! Shortwave (insolation) flux
real(DP), intent(in):: xyr_RadLFlux (0:imax-1, 1:jmax, 0:kmax)
! 長波フラックス.
! Longwave flux
real(DP), intent(in):: xy_GroundTempFlux (0:imax-1, 1:jmax)
! 地中熱フラックス.
! Ground temperature flux
real(DP), intent(in):: xy_SurfTemp (0:imax-1, 1:jmax)
! 地表面温度.
! Surface temperature
real(DP), intent(in):: xyz_SoilTemp (0:imax-1, 1:jmax, 1:kslmax)
! 土壌温度 (K)
! Soil temperature (K)
real(DP), intent(in):: xy_SurfHumidCoef (0:imax-1, 1:jmax)
! 地表湿潤度.
! Surface humidity coefficient
integer, intent(in):: xy_SurfCond (0:imax-1, 1:jmax)
! 地表状態.
! Surface condition
real(DP), intent(in):: xy_SurfHeatCapacity (0:imax-1, 1:jmax)
! 地表熱容量.
! Surface heat capacity
real(DP), intent(in):: xy_SeaIceConc(0:imax-1,1:jmax)
! 海氷密度 (0 <= xy_SeaIceConc <= 1)
! Sea ice concentration (0 <= xy_SeaIceConc <= 1)
real(DP), intent(in):: xyra_DelRadLFlux (0:imax-1, 1:jmax, 0:kmax, 0:1)
! 長波地表温度変化.
! Surface temperature tendency with longwave
real(DP), intent(in):: xyr_Press (0:imax-1, 1:jmax, 0:kmax)
! $ \hat{p} $ . 気圧 (半整数レベル).
! Air pressure (half level)
real(DP), intent(in):: xyz_Exner (0:imax-1, 1:jmax, 1:kmax)
! Exner 関数 (整数レベル).
! Exner function (full level)
real(DP), intent(in):: xyr_Exner (0:imax-1, 1:jmax, 0:kmax)
! Exner 関数 (半整数レベル).
! Exner function (half level)
real(DP), intent(in):: xyr_VelTransCoef (0:imax-1, 1:jmax, 0:kmax)
! 輸送係数:運動量.
! Transfer coefficient: velocity
real(DP), intent(in):: xyr_TempTransCoef (0:imax-1, 1:jmax, 0:kmax)
! 輸送係数:温度.
! Transfer coefficient: temperature
real(DP), intent(in):: xyr_QMixTransCoef(0:imax-1, 1:jmax, 0:kmax)
! 輸送係数:質量.
! Transfer coefficient: mass of constituents
real(DP), intent(in):: xy_SurfVelTransCoef (0:imax-1, 1:jmax)
! 輸送係数:運動量.
! Diffusion coefficient: velocity
real(DP), intent(in):: xy_SurfTempTransCoef (0:imax-1, 1:jmax)
! 輸送係数:温度.
! Transfer coefficient: temperature
real(DP), intent(in):: xy_SurfQVapTransCoef (0:imax-1, 1:jmax)
! 輸送係数:比湿.
! Transfer coefficient: specific humidity
real(DP), intent(in):: xyr_SoilTempTransCoef (0:imax-1, 1:jmax, 0:kslmax)
! 輸送係数:土壌温度.
! Transfer coefficient: soil temperature
real(DP), intent(in):: xy_SurfSnowB (0:imax-1, 1:jmax)
! 積雪量.
! Surface snow amount.
real(DP), intent(out):: xyz_DUDt (0:imax-1, 1:jmax, 1:kmax)
! $ \DP{u}{t} $ . 東西風速変化.
! Eastward wind tendency
real(DP), intent(out):: xyz_DVDt (0:imax-1, 1:jmax, 1:kmax)
! $ \DP{v}{t} $ . 南北風速変化.
! Northward wind tendency
real(DP), intent(out):: xyz_DTempDt (0:imax-1, 1:jmax, 1:kmax)
! $ \DP{T}{t} $ . 温度変化.
! Temperature tendency
real(DP), intent(out):: xyzf_DQMixDt(0:imax-1, 1:jmax, 1:kmax, 1:ncmax)
! $ \DP{q}{t} $ . 質量混合比変化.
! Mass mixing ratio tendency
real(DP), intent(out):: xy_DSurfTempDt (0:imax-1, 1:jmax)
! 地表面温度変化率 (K s-1)
! Surface temperature tendency (K s-1)
real(DP), intent(out):: xyz_DSoilTempDt (0:imax-1, 1:jmax, 1:kslmax)
! $ \DP{Tg}{t} $ . 土壌温度変化 (K s-1)
! Temperature tendency (K s-1)
real(DP), intent(out):: xy_DSoilMoistDt (0:imax-1, 1:jmax)
! 土壌温度時間変化率 (kg m-2 s-1)
! Soil temperature tendency (kg m-2 s-1)
real(DP), intent(out):: xy_DSurfSnowDt (0:imax-1, 1:jmax)
! 積雪率時間変化率 (kg m-2 s-1)
! Surface snow amount tendency (kg m-2 s-1)
! 作業変数
! Work variables
!
real(DP):: xyza_UVMtx (0:imax-1, 1:jmax, 1:kmax, -1:1)
! 速度陰解行列.
! Implicit matrix about velocity
real(DP):: xyra_TempMtx(0:imax-1, 1:jmax, 0:kmax, -1:1)
! 温度陰解行列.
! Implicit matrix about temperature
real(DP):: xyza_QMixMtx(0:imax-1, 1:jmax, 1:kmax, -1:1)
! 質量混合比陰解行列.
! Implicit matrix about mass mixing ratio
real(DP):: xyaa_SurfMtx(0:imax-1, 1:jmax, 0:0, -1:1)
! 惑星表面エネルギー収支用陰解行列
! Implicit matrix for surface energy balance
real(DP):: xy_SurfRH(0:imax-1,1:jmax)
real(DP):: xyza_UVLUMtx (0:imax-1, 1:jmax, 1:kmax,-1:1)
! LU 行列.
! LU matrix
!!$ real(DP):: xyza_TempQVapLUMtx (0:imax-1, 1:jmax, -kmax:kmax, -1:1)
!!$ ! LU 行列.
!!$ ! LU matrix
!!$ real(DP):: xyz_DelTempQVap (0:imax-1, 1:jmax, -kmax:kmax)
!!$ ! $ T q $ の時間変化.
!!$ ! Tendency of $ T q $
!!$
!!$ real(DP):: xyza_TempLUMtx (0:imax-1, 1:jmax, 0:kmax, -1:1)
!!$ ! LU 行列.
!!$ ! LU matrix
!!$ real(DP):: xyz_DelTempLUVec (0:imax-1, 1:jmax, 0:kmax)
!!$ ! $ T q $ の時間変化.
!!$ ! Tendency of $ T q $
real(DP):: xyza_QMixLUMtx (0:imax-1, 1:jmax, 1:kmax, -1:1)
! LU 行列.
! LU matrix
real(DP):: xyz_DelQMixLUVec (0:imax-1, 1:jmax, 1:kmax)
! $ q $ の時間変化.
! Tendency of $ q $
!!$ real(DP):: xy_SurfQVapSat (0:imax-1, 1:jmax)
!!$ ! 地表飽和比湿.
!!$ ! Saturated specific humidity on surface
!!$ real(DP):: xy_SurfDQVapSatDTemp (0:imax-1, 1:jmax)
!!$ ! 地表飽和比湿変化.
!!$ ! Saturated specific humidity tendency on surface
real(DP):: xyaa_SoilTempMtx (0:imax-1, 1:jmax, 1:kslmax,-1:1)
! 土壌温度拡散方程式の行列
! Matrix for diffusion equation of soil temperature
real(DP):: xyaa_TempSoilTempLUMtx (0:imax-1, 1:jmax, -kslmax:kmax, -1:1)
! LU 行列.
! LU matrix
real(DP):: xya_DelTempSoilTempLUVec (0:imax-1, 1:jmax, -kslmax:kmax)
! $ T, Tg $ の時間変化.
! Tendency of $ T $ and $ Tg |
real(DP):: SurfSnowATentative
! 積雪量の仮の値 (kg m-2)
! pseudo value of surface snow amount (kg m-2)
integer:: i ! 経度方向に回る DO ループ用作業変数
! Work variables for DO loop in longitude
integer:: j ! 緯度方向に回る DO ループ用作業変数
! Work variables for DO loop in latitude
integer:: k ! 鉛直方向に回る DO ループ用作業変数
! Work variables for DO loop in vertical direction
integer:: l ! 行列用 DO ループ用作業変数
! Work variables for DO loop of matrices
integer:: n ! 組成方向に回る DO ループ用作業変数
! Work variables for DO loop in dimension of constituents
! 実行文 ; Executable statement
!
! 計算時間計測開始
! Start measurement of computation time
!
call TimesetClockStart( module_name )
! 初期化
! Initialization
!
if ( .not. phy_implicit_sdh_inited ) call PhyImplInit
if ( .not. FlagSSModel ) then
call MessageNotify( 'E', module_name, 'FlagSSModel has to be true.' )
end if
! FlagBucketModel は関係ないよね?
! SSModel 強制にした時点で, 水蒸気は地面と分離したから.
!!$ if ( .not. FlagBucketModel ) then
!!$ call MessageNotify( 'E', module_name, 'FlagBucketModel has to be true.' )
!!$ end if
! 陰解法のための行列作成
! Create matrices for implicit scheme
!
! 鉛直拡散スキームの輸送係数から陰解行列の計算 (速度)
! Calculate implicit matrices from transfer coefficient of vertical diffusion scheme (velocity)
!
k = 1
xyza_UVMtx (:,:,k,-1) = 0.0d0
xyza_UVMtx (:,:,k, 0) = - ( xyr_Press(:,:,k) - xyr_Press(:,:,k-1) ) / Grav / ( 2. * DelTime ) + xy_SurfVelTransCoef(:,:) + xyr_VelTransCoef(:,:,k )
xyza_UVMtx (:,:,k, 1) = - xyr_VelTransCoef(:,:,k)
do k = 2, kmax-1
xyza_UVMtx (:,:,k,-1) = - xyr_VelTransCoef(:,:,k-1)
xyza_UVMtx (:,:,k, 0) = - ( xyr_Press(:,:,k) - xyr_Press(:,:,k-1) ) / Grav / ( 2. * DelTime ) + xyr_VelTransCoef(:,:,k-1) + xyr_VelTransCoef(:,:,k )
xyza_UVMtx (:,:,k, 1) = - xyr_VelTransCoef(:,:,k)
end do
k = kmax
xyza_UVMtx (:,:,k,-1) = - xyr_VelTransCoef(:,:,k-1)
xyza_UVMtx (:,:,k, 0) = - ( xyr_Press(:,:,k) - xyr_Press(:,:,k-1) ) / Grav / ( 2. * DelTime ) + xyr_VelTransCoef(:,:,k-1)
xyza_UVMtx (:,:,k, 1) = 0.0d0
! 鉛直拡散スキームの輸送係数から陰解行列の計算 (温度)
! Calculate implicit matrices from transfer coefficient of vertical diffusion scheme (temperature)
!
k = 1
xyra_TempMtx(:,:,k,-1) = - CpDry * xy_SurfTempTransCoef(:,:)
xyra_TempMtx(:,:,k, 0) = - CpDry * ( xyr_Press(:,:,k) - xyr_Press(:,:,k-1) ) / Grav / ( 2. * DelTime ) + CpDry * xyr_Exner(:,:,k-1) / xyz_Exner(:,:,k ) * xy_SurfTempTransCoef(:,:) + CpDry * xyr_Exner(:,:,k ) / xyz_Exner(:,:,k ) * xyr_TempTransCoef(:,:,k )
xyra_TempMtx(:,:,k, 1) = - CpDry * xyr_Exner(:,:,k ) / xyz_Exner(:,:,k+1) * xyr_TempTransCoef(:,:,k )
do k = 2, kmax-1
xyra_TempMtx(:,:,k,-1) = - CpDry * xyr_Exner(:,:,k-1) / xyz_Exner(:,:,k-1) * xyr_TempTransCoef(:,:,k-1)
xyra_TempMtx(:,:,k, 0) = - CpDry * ( xyr_Press(:,:,k) - xyr_Press(:,:,k-1) ) / Grav / ( 2. * DelTime ) + CpDry * xyr_Exner(:,:,k-1) / xyz_Exner(:,:,k ) * xyr_TempTransCoef(:,:,k-1) + CpDry * xyr_Exner(:,:,k ) / xyz_Exner(:,:,k ) * xyr_TempTransCoef(:,:,k )
xyra_TempMtx(:,:,k, 1) = - CpDry * xyr_Exner(:,:,k ) / xyz_Exner(:,:,k+1) * xyr_TempTransCoef(:,:,k )
end do
k = kmax
xyra_TempMtx(:,:,k,-1) = - CpDry * xyr_Exner(:,:,k-1) / xyz_Exner(:,:,k-1) * xyr_TempTransCoef(:,:,k-1)
xyra_TempMtx(:,:,k, 0) = - CpDry * ( xyr_Press(:,:,k) - xyr_Press(:,:,k-1) ) / Grav / ( 2. * DelTime ) + CpDry * xyr_Exner(:,:,k-1) / xyz_Exner(:,:,k ) * xyr_TempTransCoef(:,:,k-1)
xyra_TempMtx(:,:,k, 1) = 0.0d0
! 鉛直拡散スキームの輸送係数から陰解行列の計算 (比湿)
! Calculate implicit matrices from transfer coefficient of vertical diffusion scheme (specific humidity)
!
!!$ ! 飽和比湿の計算
!!$ ! Calculate saturated specific humidity
!!$ !
!!$ do i = 0, imax-1
!!$ do j = 1, jmax
!!$ xy_SurfQVapSat(i,j) = &
!!$ & CalcQVapSat( xy_SurfTemp(i,j), xyr_Press(i,j,0) )
!!$ end do
!!$ end do
!!$ do i = 0, imax-1
!!$ do j = 1, jmax
!!$ xy_SurfDQVapSatDTemp(i,j) = &
!!$ & CalcDQVapSatDTemp( xy_SurfTemp(i,j), xy_SurfQVapSat(i,j) )
!!$ end do
!!$ end do
k = 1
xyza_QMixMtx(:,:,k,-1) = 0.0d0
xyza_QMixMtx(:,:,k, 0) = - ( xyr_Press(:,:,k) - xyr_Press(:,:,k-1) ) / Grav / ( 2. * DelTime ) + xyr_QMixTransCoef(:,:,k )
xyza_QMixMtx(:,:,k, 1) = - xyr_QMixTransCoef(:,:,k )
do k = 2, kmax-1
xyza_QMixMtx(:,:,k,-1) = - xyr_QMixTransCoef(:,:,k-1)
xyza_QMixMtx(:,:,k, 0) = - ( xyr_Press(:,:,k) - xyr_Press(:,:,k-1) ) / Grav / ( 2. * DelTime ) + xyr_QMixTransCoef(:,:,k-1) + xyr_QMixTransCoef(:,:,k )
xyza_QMixMtx(:,:,k, 1) = - xyr_QMixTransCoef(:,:,k )
end do
k = kmax
xyza_QMixMtx(:,:,k,-1) = - xyr_QMixTransCoef(:,:,k-1)
xyza_QMixMtx(:,:,k, 0) = - ( xyr_Press(:,:,k) - xyr_Press(:,:,k-1) ) / Grav / ( 2. * DelTime ) + xyr_QMixTransCoef(:,:,k-1)
xyza_QMixMtx(:,:,k, 1) = 0.0d0
! 土壌温度計算用の輸送係数から陰解行列の計算 (土壌温度)
! Calculate implicit matrices by using transfer coefficient (soil temperature)
!
if ( kslmax /= 0 ) then ! xyr_SoilTempMtx is not used when kslmax = 0.
do k = 1, kslmax-1
xyaa_SoilTempMtx(:,:,k,-1) = - xyr_SoilTempTransCoef(:,:,k-1)
xyaa_SoilTempMtx(:,:,k, 0) = xy_SoilHeatCap(:,:) * ( r_SSDepth(k) - r_SSDepth(k-1) ) / ( 2. * DelTime ) + xyr_SoilTempTransCoef(:,:,k-1) + xyr_SoilTempTransCoef(:,:,k )
xyaa_SoilTempMtx(:,:,k, 1) = - xyr_SoilTempTransCoef(:,:,k )
end do
k = kslmax
xyaa_SoilTempMtx(:,:,k,-1) = - xyr_SoilTempTransCoef(:,:,k-1)
xyaa_SoilTempMtx(:,:,k, 0) = xy_SoilheatCap(:,:) * ( r_SSDepth(k) - r_SSDepth(k-1) ) / ( 2. * DelTime ) + xyr_TempTransCoef(:,:,k-1)
xyaa_SoilTempMtx(:,:,k, 1) = 0.0d0
end if
! 地表面過程の輸送係数から陰解行列の計算
! Calculate implicit matrices from transfer coefficient of surface process
!
do i = 0, imax-1
do j = 1, jmax
if ( xy_SurfCond(i,j) >= 1 ) then
! land
xyaa_SurfMtx(i,j,0,-1) = xyr_SoilTempTransCoef(i,j,0)
xyaa_SurfMtx(i,j,0, 0) = xy_SurfHeatCapacity(i,j) / ( 2. * DelTime ) + CpDry * xy_SurfTempTransCoef(i,j) + xyra_DelRadLFlux(i,j,0,0) - xyr_SoilTempTransCoef(i,j,0)
xyaa_SurfMtx(i,j,0, 1) = - CpDry * xyr_Exner(i,j,0) / xyz_Exner(i,j,1) * xy_SurfTempTransCoef(i,j) + xyra_DelRadLFlux(i,j,0,1)
else
! ocean
if ( xy_SeaIceConc(i,j) > SeaIceThreshold ) then
! sea ice
xyaa_SurfMtx(i,j,0,-1) = 0.0d0
xyaa_SurfMtx(i,j,0, 0) = SeaIceVolHeatCap / ( 2.0d0 * DelTime ) + CpDry * xy_SurfTempTransCoef(i,j) + xyra_DelRadLFlux(i,j,0,0) + SeaIceThermCondCoef / SeaIceThickness
xyaa_SurfMtx(i,j,0, 1) = - CpDry * xyr_Exner(i,j,0) / xyz_Exner(i,j,1) * xy_SurfTempTransCoef(i,j) + xyra_DelRadLFlux(i,j,0,1)
else if ( FlagSSModelSO ) then
! mixed layer ocean
xyaa_SurfMtx(i,j,0,-1) = 0.0d0
xyaa_SurfMtx(i,j,0, 0) = SOHeatCapacity / ( 2. * DelTime ) + CpDry * xy_SurfTempTransCoef(i,j) + xyra_DelRadLFlux(i,j,0,0)
xyaa_SurfMtx(i,j,0, 1) = - CpDry * xyr_Exner(i,j,0) / xyz_Exner(i,j,1) * xy_SurfTempTransCoef(i,j) + xyra_DelRadLFlux(i,j,0,1)
else
! open ocean
xyaa_SurfMtx(i,j,0,-1) = 0.0d0
xyaa_SurfMtx(i,j,0, 0) = 1.0d0
xyaa_SurfMtx(i,j,0, 1) = 0.0d0
end if
end if
end do
end do
do j = 1, jmax
do i = 0, imax-1
if ( xy_SurfCond(i,j) >= 1 ) then
! land
xy_SurfRH(i,j) = - xyr_RadSFlux(i,j,0) - xyr_RadLFlux(i,j,0) - xyr_TempFlux(i,j,0) - LatentHeat * xyrf_QMixFlux(i,j,0,IndexH2OVap) + xyr_SoilTempFlux(i,j,0)
else
! ocean
if ( xy_SeaIceConc(i,j) > SeaIceThreshold ) then
! sea ice
xy_SurfRH(i,j) = - xyr_RadSFlux(i,j,0) - xyr_RadLFlux(i,j,0) - xyr_TempFlux(i,j,0) - LatentHeat * xyrf_QMixFlux(i,j,0,IndexH2OVap) - SeaIceThermCondCoef * ( xy_SurfTemp(i,j) - TempBelowSeaIce ) / SeaIceThickness
else if ( FlagSSModelSO ) then
! mixed layer ocean
xy_SurfRH(i,j) = - xyr_RadSFlux(i,j,0) - xyr_RadLFlux(i,j,0) - xyr_TempFlux(i,j,0) - LatentHeat * xyrf_QMixFlux(i,j,0,IndexH2OVap) !&
!!$ & + xy_GroundTempFlux(i,j)
else
! open ocean
xy_SurfRH(i,j) = 0.0d0
end if
end if
end do
end do
! 東西風速, 南北風速の計算
! Calculate eastward and northward wind
!
xyza_UVLUMtx = xyza_UVMtx
call PhyImplLUDecomp3( xyza_UVLUMtx, imax * jmax, kmax ) ! (in)
do k = 1, kmax
xyz_DUDt(:,:,k) = - ( xyr_UFlux(:,:,k) - xyr_UFlux(:,:,k-1) )
xyz_DVDt(:,:,k) = - ( xyr_VFlux(:,:,k) - xyr_VFlux(:,:,k-1) )
end do
call PhyImplLUSolve3( xyz_DUDt, xyza_UVLUMtx, 1, imax * jmax, kmax ) ! (in)
call PhyImplLUSolve3( xyz_DVDt, xyza_UVLUMtx, 1, imax * jmax, kmax ) ! (in)
do k = 1, kmax
xyz_DUDt(:,:,k) = xyz_DUDt(:,:,k) / ( 2. * DelTime )
xyz_DVDt(:,:,k) = xyz_DVDt(:,:,k) / ( 2. * DelTime )
end do
! 温度と比湿の計算
! Calculate temperature and specific humidity
!
do l = -1, 1
do k = 1, kslmax
xyaa_TempSoilTempLUMtx(:,:,-k,-l) = xyaa_SoilTempMtx(:,:,k,l)
end do
k = 0
xyaa_TempSoilTempLUMtx(:,:, k, l) = xyaa_SurfMtx(:,:,0,l)
do k = 1, kmax
xyaa_TempSoilTempLUMtx(:,:, k, l) = xyra_TempMtx(:,:,k,l)
end do
end do
call PhyImplLUDecomp3( xyaa_TempSoilTempLUMtx, imax * jmax, kmax + 1 + kslmax )
do k = 1, kslmax
xya_DelTempSoilTempLUVec(:,:,-k) = - ( xyr_SoilTempFlux(:,:,k) - xyr_SoilTempFlux(:,:,k-1) )
end do
k = 0
xya_DelTempSoilTempLUVec(:,:,0) = xy_SurfRH(:,:)
do k = 1, kmax
xya_DelTempSoilTempLUVec(:,:,k) = - ( xyr_TempFlux(:,:,k) - xyr_TempFlux(:,:,k-1) )
end do
call PhyImplLUSolve3( xya_DelTempSoilTempLUVec, xyaa_TempSoilTempLUMtx, 1, imax * jmax , kmax + 1 + kslmax )
do k = 1, kslmax
do j = 1, jmax
do i = 0, imax-1
if ( xy_SurfCond(i,j) >= 1 ) then
xyz_DSoilTempDt(i,j,k) = xya_DelTempSoilTempLUVec(i,j,-k) / ( 2. * DelTime )
else
xyz_DSoilTempDt(i,j,k) = 0.0d0
end if
end do
end do
end do
do j = 1, jmax
do i = 0, imax-1
if ( xy_SurfCond(i,j) >= 1 ) then
! land
xy_DSurfTempDt(i,j) = xya_DelTempSoilTempLUVec(i,j,0) / ( 2. * DelTime )
else
! ocean
if ( xy_SeaIceConc(i,j) > SeaIceThreshold ) then
! sea ice
xy_DSurfTempDt(i,j) = xya_DelTempSoilTempLUVec(i,j,0) / ( 2. * DelTime )
else if ( FlagSSModelSO ) then
! mixed layer ocean
xy_DSurfTempDt(i,j) = xya_DelTempSoilTempLUVec(i,j,0) / ( 2. * DelTime )
else
! open ocean
xy_DSurfTempDt(i,j) = 0.
end if
end if
end do
end do
do k = 1, kmax
xyz_DTempDt(:,:,k) = xya_DelTempSoilTempLUVec(:,:,k) / ( 2. * DelTime )
end do
!
! Calculation of tendencies of soil moisture and surface snow amount
!
if ( FlagBucketModel ) then
if ( FlagBucketModelSnow ) then
! Evaporation is subtracted from surface snow and soil moisture
!
xy_DSurfSnowDt = - xyrf_QMixFlux(:,:,0,IndexH2OVap)
do j = 1, jmax
do i = 0, imax-1
SurfSnowATentative = xy_SurfSnowB(i,j) + xy_DSurfSnowDt(i,j) * 2.0d0 * DelTime
if ( SurfSnowATentative < 0.0d0 ) then
xy_DSoilMoistDt(i,j) = SurfSnowATentative / ( 2.0d0 * DelTime )
xy_DSurfSnowDt (i,j) = - xy_SurfSnowB(i,j) / ( 2.0d0 * DelTime )
else
xy_DSoilMoistDt(i,j) = 0.0d0
end if
end do
end do
else
! Evaporation is subtracted from soil moisture
!
xy_DSoilMoistDt = - xyrf_QMixFlux(:,:,0,IndexH2OVap)
xy_DSurfSnowDt = 0.0d0
end if
else
xy_DSoilMoistDt = 0.0d0
xy_DSurfSnowDt = 0.0d0
end if
call PhyImplSDHSnowMeltCorrection( xyr_TempFlux, xyrf_QMixFlux(:,:,:,IndexH2OVap), xyr_SoilTempFlux, xyr_SoilTempTransCoef, xyr_RadSFlux, xyr_RadLFlux, xy_GroundTempFlux, xy_SurfTemp, xyz_SoilTemp, xy_SurfSnowB, xy_SurfCond, xy_SurfHeatCapacity, xyra_DelRadLFlux, xyz_Exner, xyr_Exner, xy_SurfTempTransCoef, xyz_DTempDt, xy_DSurfTempDt, xyz_DSoilTempDt, xy_DSoilMoistDt, xy_DSurfSnowDt )
call PhyImplSDHSeaIceCorrection( xy_SurfCond, xy_SeaIceConc, xy_SurfTemp, xy_DSurfTempDt )
do l = -1, 1
do k = 1, kmax
xyza_QMixLUMtx(:,:,k,l) = xyza_QMixMtx(:,:,k,l)
end do
end do
call PhyImplLUDecomp3( xyza_QMixLUMtx, imax * jmax, kmax )
do n = 1, ncmax
do k = 1, kmax
xyz_DelQMixLUVec(:,:,k) = - ( xyrf_QMixFlux(:,:,k,n) - xyrf_QMixFlux(:,:,k-1,n) )
end do
call PhyImplLUSolve3( xyz_DelQMixLUVec, xyza_QMixLUMtx, 1, imax * jmax , kmax )
do k = 1, kmax
xyzf_DQMixDt(:,:,k,n) = xyz_DelQMixLUVec(:,:,k) / ( 2. * DelTime )
end do
end do
!#########################################################
!!$ ! code for debug, this will be removed, (Y. O. Takahashi, 2009/04/07)
!!$ i = 1
!!$ j = jmax / 2
!!$ write( 6, * ) &
!!$ & - xyr_RadSFlux(i,j,0), &
!!$ & - ( xyr_RadLFlux(i,j,0) &
!!$ & + xyra_DelRadLFlux(i,j,0,0) * xy_DSurfTempDt(i,j) * ( 2.0d0 * DelTime ) &
!!$ & + xyra_DelRadLFlux(i,j,0,1) * xyz_DTempDt(i,j,1) * ( 2.0d0 * DelTime ) ), &
!!$ & - ( xyr_TempFlux(i,j,0) &
!!$ & - CpDry * xyr_Exner(i,j,0) * xy_SurfTempTransCoef(i,j) &
!!$ & * ( xyz_DTempDt(i,j,1) / xyz_Exner(i,j,1) &
!!$ & - xy_DSurfTempDt(i,j) / xyr_Exner(i,j,0) ) * ( 2.0d0 * DelTime ) ), &
!!$ & - LatentHeat &
!!$! & * ( xyr_QVapFlux(i,j,0) &
!!$! & - xy_SurfQVapTransCoef(i,j) &
!!$! & * ( xyz_DQVapDt(i,j,1) &
!!$! & - xy_SurfDQVapSatDTemp(i,j) * xy_DSurfTempDt(i,j) ) &
!!$! & * ( 2.0d0 * DelTime ) ) !, &
!!$ & * xyr_QVapFlux(i,j,0) !, &
!!$! & + xy_GroundTempFlux(i,j)
!!$
!!$ xy_SurfQVapSat(i,j) = &
!!$ & - xyr_RadSFlux(i,j,0) &
!!$ & - ( xyr_RadLFlux(i,j,0) &
!!$ & + xyra_DelRadLFlux(i,j,0,0) * xy_DSurfTempDt(i,j) * ( 2.0d0 * DelTime ) &
!!$ & + xyra_DelRadLFlux(i,j,0,1) * xyz_DTempDt(i,j,1) * ( 2.0d0 * DelTime ) ) &
!!$ & - ( xyr_TempFlux(i,j,0) &
!!$ & - CpDry * xyr_Exner(i,j,0) * xy_SurfTempTransCoef(i,j) &
!!$ & * ( xyz_DTempDt(i,j,1) / xyz_Exner(i,j,1) &
!!$ & - xy_DSurfTempDt(i,j) / xyr_Exner(i,j,0) ) * ( 2.0d0 * DelTime ) ) &
!!$ & - LatentHeat &
!!$! & * ( xyr_QVapFlux(i,j,0) &
!!$! & - xy_SurfQVapTransCoef(i,j) &
!!$! & * ( xyz_DQVapDt(i,j,1) &
!!$! & - xy_SurfDQVapSatDTemp(i,j) * xy_DSurfTempDt(i,j) ) &
!!$! & * ( 2.0d0 * DelTime ) )
!!$ & * xyr_QVapFlux(i,j,0)
!!$ write( 6, * ) '# sum ', xy_SurfQVapSat(i,j)
!#########################################################
! 計算時間計測一時停止
! Pause measurement of computation time
!
call TimesetClockStop( module_name )
end subroutine PhyImplSDHTendency
| Variable : | |||
| phy_implicit_sdh_inited = .false. : | logical, save, public
|
| Subroutine : |
依存モジュールの初期化チェック
Check initialization of dependency modules
subroutine InitCheck
!
! 依存モジュールの初期化チェック
!
! Check initialization of dependency modules
! モジュール引用 ; USE statements
!
! NAMELIST ファイル入力に関するユーティリティ
! Utilities for NAMELIST file input
!
use namelist_util, only: namelist_util_inited
! 格子点設定
! Grid points settings
!
use gridset, only: gridset_inited
! 物理定数設定
! Physical constants settings
!
use constants, only: constants_inited
! 座標データ設定
! Axes data settings
!
use axesset, only: axesset_inited
! 時刻管理
! Time control
!
use timeset, only: timeset_inited
! 実行文 ; Executable statement
!
if ( .not. namelist_util_inited ) call MessageNotify( 'E', module_name, '"namelist_util" module is not initialized.' )
if ( .not. gridset_inited ) call MessageNotify( 'E', module_name, '"gridset" module is not initialized.' )
if ( .not. constants_inited ) call MessageNotify( 'E', module_name, '"constants" module is not initialized.' )
if ( .not. axesset_inited ) call MessageNotify( 'E', module_name, '"axesset" module is not initialized.' )
if ( .not. timeset_inited ) call MessageNotify( 'E', module_name, '"timeset" module is not initialized.' )
end subroutine InitCheck
| Subroutine : |
phy_implicit モジュールの初期化を行います. NAMELIST#phy_implicit_nml の読み込みはこの手続きで行われます.
"phy_implicit" module is initialized. "NAMELIST#phy_implicit_nml" is loaded in this procedure.
This procedure input/output NAMELIST#phy_implicit_sdh_nml .
subroutine PhyImplInit
!
! phy_implicit モジュールの初期化を行います.
! NAMELIST#phy_implicit_nml の読み込みはこの手続きで行われます.
!
! "phy_implicit" module is initialized.
! "NAMELIST#phy_implicit_nml" is loaded in this procedure.
!
! モジュール引用 ; USE statements
!
! NAMELIST ファイル入力に関するユーティリティ
! Utilities for NAMELIST file input
!
use namelist_util, only: namelist_filename, NmlutilMsg, NmlutilAryValid
! ファイル入出力補助
! File I/O support
!
use dc_iounit, only: FileOpen
! 種別型パラメタ
! Kind type parameter
!
use dc_types, only: STDOUT ! 標準出力の装置番号. Unit number of standard output
! 文字列操作
! Character handling
!
use dc_string, only: StoA
! 宣言文 ; Declaration statements
!
implicit none
! 作業変数
! Work variables
!
integer:: unit_nml ! NAMELIST ファイルオープン用装置番号.
! Unit number for NAMELIST file open
integer:: iostat_nml ! NAMELIST 読み込み時の IOSTAT.
! IOSTAT of NAMELIST read
! NAMELIST 変数群
! NAMELIST group name
!
namelist /phy_implicit_sdh_nml/ SOHeatCapacity ! Slab ocean heat capacity (J m-2 K-1)
!
! デフォルト値については初期化手続 "phy_implicit#PhyImplInit"
! のソースコードを参照のこと.
!
! Refer to source codes in the initialization procedure
! "phy_implicit#PhyImplInit" for the default values.
!
! 実行文 ; Executable statement
!
if ( phy_implicit_sdh_inited ) return
call InitCheck
! デフォルト値の設定
! Default values settings
!
SOHeatCapacity = 4.187d3 * 1.0d3 * 60.0d0
! 4.187d3 (J (kg K)-1) * 1.0d3 (kg m-3) * 60.0d0 (m)
! NAMELIST の読み込み
! NAMELIST is input
!
if ( trim(namelist_filename) /= '' ) then
call FileOpen( unit_nml, namelist_filename, mode = 'r' ) ! (in)
rewind( unit_nml )
read( unit_nml, nml = phy_implicit_sdh_nml, iostat = iostat_nml ) ! (out)
close( unit_nml )
call NmlutilMsg( iostat_nml, module_name ) ! (in)
end if
! 印字 ; Print
!
call MessageNotify( 'M', module_name, '----- Initialization Messages -----' )
call MessageNotify( 'M', module_name, ' SOHeatCapacity = %f', d = (/ SOHeatCapacity /) )
call MessageNotify( 'M', module_name, '-- version = %c', c1 = trim(version) )
phy_implicit_sdh_inited = .true.
end subroutine PhyImplInit
| Subroutine : | |||
| jna_LUMtx(JDim, NDim, -1:1) : | real(DP), intent(inout)
| ||
| JDim : | integer, intent(in) | ||
| NDim : | integer, intent(in) |
3 重対角行列の LU 分解を行います.
LU decomposition of triple diagonal matrix.
subroutine PhyImplLUDecomp3( jna_LUMtx, JDim, NDim )
!
! 3 重対角行列の LU 分解を行います.
!
! LU decomposition of triple diagonal matrix.
!
! 宣言文 ; Declaration statements
!
implicit none
integer, intent(in):: JDim
integer, intent(in):: NDim
real(DP), intent(inout):: jna_LUMtx(JDim, NDim, -1:1)
! LU 行列.
! LU matrix
! 作業変数
! Work variables
!
integer:: j, n ! DO ループ用作業変数
! Work variables for DO loop
! 実行文 ; Executable statement
!
! LU 分解
! LU decomposition
!
do j = 1, JDim
jna_LUMtx(j,1,1) = jna_LUMtx(j,1,1) / jna_LUMtx(j,1,0)
end do
do n = 2, NDim-1
do j = 1, JDim
jna_LUMtx(j,n,0) = jna_LUMtx(j,n,0) - jna_LUMtx(j,n,-1) * jna_LUMtx(j,n-1,1)
jna_LUMtx(j,n,1) = jna_LUMtx(j,n,1) / jna_LUMtx(j,n,0)
end do
end do
do j = 1, JDim
jna_LUMtx(j,NDim,0) = jna_LUMtx(j,NDim, 0) - jna_LUMtx(j,NDim,-1) * jna_LUMtx(j,NDim-1,1)
end do
end subroutine PhyImplLUDecomp3
| Subroutine : | |||
| ijn_Vector(IDim, JDim, NDim) : | real(DP), intent(inout)
| ||
| jna_LUMtx(JDim, NDim, -1:1) : | real(DP), intent(in)
| ||
| IDim : | integer, intent(in) | ||
| JDim : | integer, intent(in) | ||
| NDim : | integer, intent(in) |
LU 分解による解の計算 (3重対角行列用) を行います.
Solve with LU decomposition (For triple diagonal matrix).
subroutine PhyImplLUSolve3( ijn_Vector, jna_LUMtx, IDim, JDim, NDim )
!
! LU 分解による解の計算 (3重対角行列用) を行います.
!
! Solve with LU decomposition (For triple diagonal matrix).
!
! 宣言文 ; Declaration statements
!
implicit none
integer, intent(in):: IDim
integer, intent(in):: JDim
integer, intent(in):: NDim
real(DP), intent(in):: jna_LUMtx(JDim, NDim, -1:1)
! LU 行列.
! LU matrix
real(DP), intent(inout):: ijn_Vector(IDim, JDim, NDim)
! 右辺ベクトル / 解.
! Right-hand side vector / solution
! 作業変数
! Work variables
!
integer:: i, j, n ! DO ループ用作業変数
! Work variables for DO loop
! 実行文 ; Executable statement
!
! 前進代入
! Forward substitution
!
do i = 1, IDim
do j = 1, JDim
ijn_Vector(i,j,1) = ijn_Vector(i,j,1) / jna_LUMtx(j,1,0)
end do
end do
do n = 2, NDim
do i = 1, IDim
do j = 1, JDim
ijn_Vector(i,j,n) = ( ijn_Vector(i,j,n) - ijn_Vector(i,j,n-1) * jna_LUMtx(j,n,-1) ) / jna_LUMtx(j,n,0)
end do
end do
end do
! 後退代入
! Backward substitution
!
do n = NDim-1, 1, -1
do i = 1, IDim
do j = 1, JDim
ijn_Vector(i,j,n) = ijn_Vector(i,j,n) - ijn_Vector(i,j,n+1) * jna_LUMtx(j,n,1)
end do
end do
end do
end subroutine PhyImplLUSolve3
| Subroutine : | |||
| xy_SurfCond(0:imax-1, 1:jmax) : | integer , intent(in )
| ||
| xy_SeaIceConc(0:imax-1,1:jmax) : | real(DP), intent(in )
| ||
| xy_SurfTemp(0:imax-1, 1:jmax) : | real(DP), intent(in )
| ||
| xy_DSurfTempDt(0:imax-1, 1:jmax) : | real(DP), intent(inout)
|
融雪による時間変化率の修正を行います.
Correction of tendencies due to melt of snow.
subroutine PhyImplSDHSeaIceCorrection( xy_SurfCond, xy_SeaIceConc, xy_SurfTemp, xy_DSurfTempDt )
!
! 融雪による時間変化率の修正を行います.
!
! Correction of tendencies due to melt of snow.
!
! モジュール引用 ; USE statements
!
! 雪と海氷の定数の設定
! Setting constants of snow and sea ice
!
use constants_snowseaice, only: TempCondWater, SeaIceThermCondCoef, SeaIceThreshold
! 時刻管理
! Time control
!
use timeset, only: DelTime, TimeN, TimesetClockStart, TimesetClockStop
! ヒストリデータ出力
! History data output
!
use gtool_historyauto, only: HistoryAutoPut
! バケツモデル
! bucket model
!
use Bucket_Model, only: FlagBucketModel, FlagBucketModelSnow
! 宣言文 ; Declaration statements
!
implicit none
integer , intent(in ):: xy_SurfCond (0:imax-1, 1:jmax)
! 地表状態.
! Surface condition
real(DP), intent(in ):: xy_SeaIceConc(0:imax-1,1:jmax)
! 海氷密度 (0 <= xy_SeaIceConc <= 1)
! Sea ice concentration (0 <= xy_SeaIceConc <= 1)
real(DP), intent(in ):: xy_SurfTemp (0:imax-1, 1:jmax)
! 地表面温度.
! Surface temperature
real(DP), intent(inout):: xy_DSurfTempDt (0:imax-1, 1:jmax)
! 地表面温度変化率 (K s-1)
! Surface temperature tendency (K s-1)
! 作業変数
! Work variables
!
integer:: i ! 経度方向に回る DO ループ用作業変数
! Work variables for DO loop in longitude
integer:: j ! 緯度方向に回る DO ループ用作業変数
! Work variables for DO loop in latitude
! 実行文 ; Executable statement
!
!!$ ! 計算時間計測開始
!!$ ! Start measurement of computation time
!!$ !
!!$ call TimesetClockStart( module_name )
! 初期化
! Initialization
!
if ( .not. phy_implicit_sdh_inited ) call PhyImplInit
!
! check flag of snow melt
!
if ( ( .not. FlagBucketModel ) .or. ( .not. FlagBucketModelSnow ) ) return
do j = 1, jmax
do i = 0, imax-1
if ( ( xy_SurfCond (i,j) == 0 ) .and. ( xy_SeaIceConc(i,j) > SeaIceThreshold ) .and. ( xy_SurfTemp(i,j) + xy_DSurfTempDt(i,j) * DelTime > TempCondWater ) ) then
xy_DSurfTempDt(i,j) = ( TempCondWater - xy_SurfTemp(i,j) ) / DelTime
end if
end do
end do
!!$ ! 計算時間計測一時停止
!!$ ! Pause measurement of computation time
!!$ !
!!$ call TimesetClockStop( module_name )
end subroutine PhyImplSDHSeaIceCorrection
| Subroutine : | |||
| xyr_TempFlux(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyr_QVapFlux(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyr_SoilTempFlux(0:imax-1, 1:jmax, 0:kslmax) : | real(DP), intent(in)
| ||
| xyr_SoilTempTransCoef(0:imax-1, 1:jmax, 0:kslmax) : | real(DP), intent(in)
| ||
| xyr_RadSFlux(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xyr_RadLFlux(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xy_GroundTempFlux(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xy_SurfTemp(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xyz_SoilTemp(0:imax-1, 1:jmax, 1:kslmax) : | real(DP), intent(in)
| ||
| xy_SurfSnowB(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xy_SurfCond(0:imax-1, 1:jmax) : | integer, intent(in)
| ||
| xy_SurfHeatCapacity(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xyra_DelRadLFlux(0:imax-1, 1:jmax, 0:kmax, 0:1) : | real(DP), intent(in)
| ||
| xyz_Exner(0:imax-1, 1:jmax, 1:kmax) : | real(DP), intent(in)
| ||
| xyr_Exner(0:imax-1, 1:jmax, 0:kmax) : | real(DP), intent(in)
| ||
| xy_SurfTempTransCoef(0:imax-1, 1:jmax) : | real(DP), intent(in)
| ||
| xyz_DTempDt(0:imax-1, 1:jmax, 1:kmax) : | real(DP), intent(in )
| ||
| xy_DSurfTempDt(0:imax-1, 1:jmax) : | real(DP), intent(inout)
| ||
| xyz_DSoilTempDt(0:imax-1, 1:jmax, 1:kslmax) : | real(DP), intent(inout)
| ||
| xy_DSoilMoistDt(0:imax-1, 1:jmax) : | real(DP), intent(inout)
| ||
| xy_DSurfSnowDt(0:imax-1, 1:jmax) : | real(DP), intent(inout)
|
融雪による時間変化率の修正を行います.
Correction of tendencies due to melt of snow.
subroutine PhyImplSDHSnowMeltCorrection( xyr_TempFlux, xyr_QVapFlux, xyr_SoilTempFlux, xyr_SoilTempTransCoef, xyr_RadSFlux, xyr_RadLFlux, xy_GroundTempFlux, xy_SurfTemp, xyz_SoilTemp, xy_SurfSnowB, xy_SurfCond, xy_SurfHeatCapacity, xyra_DelRadLFlux, xyz_Exner, xyr_Exner, xy_SurfTempTransCoef, xyz_DTempDt, xy_DSurfTempDt, xyz_DSoilTempDt, xy_DSoilMoistDt, xy_DSurfSnowDt )
!
! 融雪による時間変化率の修正を行います.
!
! Correction of tendencies due to melt of snow.
!
! モジュール引用 ; USE statements
!
! 座標データ設定
! Axes data settings
!
use axesset, only: r_SSDepth, z_SSDepth ! subsurface grid at midpoint of layer
! 物理定数設定
! Physical constants settings
!
use constants, only: CpDry, LatentHeat, LatentHeatFusion
! $ L $ [J kg-1] .
! 融解の潜熱.
! Latent heat of fusion
! 雪と海氷の定数の設定
! Setting constants of snow and sea ice
!
use constants_snowseaice, only: TempCondWater
! 時刻管理
! Time control
!
use timeset, only: DelTime, TimeN, TimesetClockStart, TimesetClockStop
! ヒストリデータ出力
! History data output
!
use gtool_historyauto, only: HistoryAutoPut
! バケツモデル
! bucket model
!
use Bucket_Model, only: FlagBucketModel, FlagBucketModelSnow
! 地下における熱の鉛直拡散
! Vertical diffusion of heat under the ground
!
use subsurface_diffusion_heat, only: xy_SoilSpecHeat , xy_SoilRho , xy_SoilHeatCap , xy_SoilHeatDiffCoef ! Heat conduction coefficient of soil (J K-1 m-1 s-1)
! 宣言文 ; Declaration statements
!
implicit none
real(DP), intent(in):: xyr_TempFlux (0:imax-1, 1:jmax, 0:kmax)
! 温度フラックス.
! Temperature flux
real(DP), intent(in):: xyr_QVapFlux (0:imax-1, 1:jmax, 0:kmax)
! 比湿フラックス.
! Specific humidity flux
real(DP), intent(in):: xyr_SoilTempFlux (0:imax-1, 1:jmax, 0:kslmax)
! 土壌の熱フラックス (W m-2)
! Heat flux in sub-surface soil (W m-2)
real(DP), intent(in):: xyr_SoilTempTransCoef (0:imax-1, 1:jmax, 0:kslmax)
! 輸送係数:土壌温度.
! Transfer coefficient: soil temperature
real(DP), intent(in):: xyr_RadSFlux (0:imax-1, 1:jmax, 0:kmax)
! 短波 (日射) フラックス.
! Shortwave (insolation) flux
real(DP), intent(in):: xyr_RadLFlux (0:imax-1, 1:jmax, 0:kmax)
! 長波フラックス.
! Longwave flux
real(DP), intent(in):: xy_GroundTempFlux (0:imax-1, 1:jmax)
! 地中熱フラックス.
! Ground temperature flux
real(DP), intent(in):: xy_SurfTemp (0:imax-1, 1:jmax)
! 地表面温度.
! Surface temperature
real(DP), intent(in):: xyz_SoilTemp (0:imax-1, 1:jmax, 1:kslmax)
! 土壌温度 (K)
! Soil temperature (K)
real(DP), intent(in):: xy_SurfSnowB (0:imax-1, 1:jmax)
! 積雪量.
! Surface snow amount.
integer, intent(in):: xy_SurfCond (0:imax-1, 1:jmax)
! 地表状態.
! Surface condition
real(DP), intent(in):: xy_SurfHeatCapacity (0:imax-1, 1:jmax)
! 地表熱容量.
! Surface heat capacity
real(DP), intent(in):: xyra_DelRadLFlux (0:imax-1, 1:jmax, 0:kmax, 0:1)
! 長波地表温度変化.
! Surface temperature tendency with longwave
real(DP), intent(in):: xyz_Exner (0:imax-1, 1:jmax, 1:kmax)
! Exner 関数 (整数レベル).
! Exner function (full level)
real(DP), intent(in):: xyr_Exner (0:imax-1, 1:jmax, 0:kmax)
! Exner 関数 (半整数レベル).
! Exner function (half level)
real(DP), intent(in):: xy_SurfTempTransCoef (0:imax-1, 1:jmax)
! 輸送係数:温度.
! Transfer coefficient: temperature
real(DP), intent(in ):: xyz_DTempDt (0:imax-1, 1:jmax, 1:kmax)
! $ \DP{T}{t} $ . 温度変化.
! Temperature tendency
real(DP), intent(inout):: xy_DSurfTempDt (0:imax-1, 1:jmax)
! 地表面温度変化率 (K s-1)
! Surface temperature tendency (K s-1)
real(DP), intent(inout):: xyz_DSoilTempDt (0:imax-1, 1:jmax, 1:kslmax)
! $ \DP{Tg}{t} $ . 土壌温度変化 (K s-1)
! Temperature tendency (K s-1)
real(DP), intent(inout):: xy_DSoilMoistDt (0:imax-1, 1:jmax)
! 土壌温度時間変化率 (kg m-2 s-1)
! Soil temperature tendency (kg m-2 s-1)
real(DP), intent(inout):: xy_DSurfSnowDt (0:imax-1, 1:jmax)
! 積雪率時間変化率 (kg m-2 s-1)
! Surface snow amount tendency (kg m-2 s-1)
! 作業変数
! Work variables
!
real(DP):: LatentHeatFluxByMelt
real(DP):: SenHeatFluxA
real(DP):: LatHeatFluxA
real(DP):: CondHeatFluxA
real(DP):: ValueAlpha
real(DP):: SurfTempATentative
real(DP):: SoilTempATentative
real(DP):: SurfSnowATentative
integer:: i ! 経度方向に回る DO ループ用作業変数
! Work variables for DO loop in longitude
integer:: j ! 緯度方向に回る DO ループ用作業変数
! Work variables for DO loop in latitude
!!$ integer:: k ! 鉛直方向に回る DO ループ用作業変数
!!$ ! Work variables for DO loop in vertical direction
! 実行文 ; Executable statement
!
!!$ ! 計算時間計測開始
!!$ ! Start measurement of computation time
!!$ !
!!$ call TimesetClockStart( module_name )
! 初期化
! Initialization
!
if ( .not. phy_implicit_sdh_inited ) call PhyImplInit
!
! check flag of snow melt
!
if ( ( .not. FlagBucketModel ) .or. ( .not. FlagBucketModelSnow ) ) return
if ( kslmax == 0 ) then
do j = 1, jmax
do i = 0, imax-1
SurfSnowATentative = xy_SurfSnowB(i,j) + xy_DSurfSnowDt(i,j) * 2.0d0 * DelTime
SurfTempATentative = xy_SurfTemp(i,j) + xy_DSurfTempDt(i,j) * 2.0d0 * DelTime
if ( ( xy_SurfCond (i,j) >= 1 ) .and. ( SurfSnowATentative > 0.0d0 ) .and. ( SurfTempATentative > TempCondWater ) ) then
! if all snow is melting,
LatentHeatFluxByMelt = SurfSnowATentative * LatentHeatFusion / ( 2.0d0 * DelTime )
SenHeatFluxA = xyr_TempFlux(i,j,0) - CpDry * xyr_Exner(i,j,0) * xy_SurfTempTransCoef(i,j) * ( xyz_DTempDt(i,j,1) / xyz_Exner(i,j,1) - xy_DSurfTempDt(i,j) / xyr_Exner(i,j,0) ) * ( 2.0d0 * DelTime )
! NOTICE: LatentHeatFlux^{n+1} = LatentHeatFlux^{n-1} due to mass
! conservation
LatHeatFluxA = LatentHeat * xyr_QVapFlux(i,j,0)
CondHeatFluxA = xy_GroundTempFlux(i,j)
ValueAlpha = xyr_RadSFlux(i,j,0) + xyr_RadLFlux(i,j,0) - xyra_DelRadLFlux(i,j,0,0) * xy_SurfTemp(i,j) + xyra_DelRadLFlux(i,j,0,1) * xyz_DTempDt(i,j,1) * ( 2.0d0 * DelTime ) + SenHeatFluxA + LatHeatFluxA + LatentHeatFluxByMelt
SurfTempATentative = xy_SurfHeatCapacity(i,j) / ( 2.0d0 * DelTime ) * xy_SurfTemp(i,j) - ValueAlpha + CondHeatFluxA
SurfTempATentative = SurfTempATentative / ( xy_SurfHeatCapacity(i,j) / ( 2.0d0 * DelTime ) + xyra_DelRadLFlux(i,j,0,0) )
if ( SurfTempATentative >= TempCondWater ) then
xy_DSurfTempDt(i,j) = ( SurfTempATentative - xy_SurfTemp(i,j) ) / ( 2.0d0 * DelTime )
!!$ xy_SoilMoistA(i,j) = &
!!$ & xy_SoilMoistA(i,j) &
!!$ & + LatentHeatFluxByMelt * ( 2.0d0 * DelTime ) / LatentHeatFusion
!!$ xy_SurfSnowA(i,j) = &
!!$ & xy_SurfSnowA(i,j) &
!!$ & - LatentHeatFluxByMelt * ( 2.0d0 * DelTime ) / LatentHeatFusion
xy_DSoilMoistDt(i,j) = xy_DSoilMoistDt(i,j) + LatentHeatFluxByMelt / LatentHeatFusion
xy_DSurfSnowDt(i,j) = xy_DSurfSnowDt (i,j) - LatentHeatFluxByMelt / LatentHeatFusion
else
! if part of snow is melting,
SurfTempATentative = TempCondWater
ValueAlpha = xyr_RadSFlux(i,j,0) + xyr_RadLFlux(i,j,0) + xyra_DelRadLFlux(i,j,0,0) * SurfTempATentative - xyra_DelRadLFlux(i,j,0,0) * xy_SurfTemp(i,j) + xyra_DelRadLFlux(i,j,0,1) * xyz_DTempDt(i,j,1) * ( 2.0d0 * DelTime ) + SenHeatFluxA + LatHeatFluxA - CondHeatFluxA
LatentHeatFluxByMelt = xy_SurfHeatCapacity(i,j) * ( SurfTempATentative - xy_SurfTemp(i,j) ) / ( 2.0d0 * DelTime ) - ValueAlpha
xy_DSurfTempDt(i,j) = ( SurfTempATentative - xy_SurfTemp(i,j) ) / ( 2.0d0 * DelTime )
!!$ xy_SoilMoistA(i,j) = &
!!$ & xy_SoilMoistA(i,j) &
!!$ & + LatentHeatFluxByMelt * ( 2.0d0 * DelTime ) / LatentHeatFusion
!!$ xy_SurfSnowA(i,j) = &
!!$ & xy_SurfSnowA(i,j) &
!!$ & - LatentHeatFluxByMelt * ( 2.0d0 * DelTime ) / LatentHeatFusion
xy_DSoilMoistDt(i,j) = xy_DSoilMoistDt(i,j) + LatentHeatFluxByMelt / LatentHeatFusion
xy_DSurfSnowDt(i,j) = xy_DSurfSnowDt (i,j) - LatentHeatFluxByMelt / LatentHeatFusion
end if
SurfSnowATentative = xy_SurfSnowB(i,j) + xy_DSurfSnowDt(i,j) * 2.0d0 * DelTime
if ( SurfSnowATentative < 0.0d0 ) then
xy_DSurfSnowDt(i,j) = - xy_SurfSnowB(i,j) / ( 2.0d0 * DelTime )
end if
end if
end do
end do
else
do j = 1, jmax
do i = 0, imax-1
SurfSnowATentative = xy_SurfSnowB(i,j) + xy_DSurfSnowDt(i,j) * 2.0d0 * DelTime
SoilTempATentative = xyz_SoilTemp(i,j,1) + xyz_DSoilTempDt(i,j,1) * 2.0d0 * DelTime
if ( ( xy_SurfCond (i,j) >= 1 ) .and. ( SurfSnowATentative > 0.0d0 ) .and. ( SoilTempATentative > TempCondWater ) ) then
! if all snow is melting,
LatentHeatFluxByMelt = SurfSnowATentative * LatentHeatFusion / ( 2.0d0 * DelTime )
SenHeatFluxA = xyr_TempFlux(i,j,0) - CpDry * xyr_Exner(i,j,0) * xy_SurfTempTransCoef(i,j) * ( xyz_DTempDt(i,j,1) / xyz_Exner(i,j,1) - xy_DSurfTempDt(i,j) / xyr_Exner(i,j,0) ) * ( 2.0d0 * DelTime )
! NOTICE: LatentHeatFlux^{n+1} = LatentHeatFlux^{n-1} due to mass conservation
LatHeatFluxA = LatentHeat * xyr_QVapFlux(i,j,0)
CondHeatFluxA = xyr_SoilTempFlux(i,j,1) - xyr_SoilTempTransCoef(i,j,1) * ( xyz_DSoilTempDt(i,j,2) - xyz_DSoilTempDt(i,j,1) ) * ( 2.0d0 * DelTime )
ValueAlpha = xyr_RadSFlux(i,j,0) + xyr_RadLFlux(i,j,0) - xyra_DelRadLFlux(i,j,0,0) * xy_SurfTemp(i,j) + xyra_DelRadLFlux(i,j,0,1) * xyz_DTempDt(i,j,1) * ( 2.0d0 * DelTime ) + SenHeatFluxA + LatHeatFluxA + LatentHeatFluxByMelt
ValueAlpha = ValueAlpha * ( r_SSDepth(0) - z_SSDepth(1) ) / xy_SoilHeatDiffCoef(i,j)
SurfTempATentative = - ( xy_SoilHeatCap(i,j) / ( 2.0d0 * DelTime ) + xy_SoilHeatDiffCoef(i,j) / ( ( r_SSDepth(0) - r_SSDepth(1) ) * ( r_SSDepth(0) - z_SSDepth(1) ) ) ) * ValueAlpha + xy_SoilHeatCap(i,j) / ( 2.0d0 * DelTime ) * xyz_SoilTemp(i,j,1) + CondHeatFluxA / ( r_SSDepth(0) - r_SSDepth(1) )
SurfTempATentative = SurfTempATentative / ( xy_SoilHeatCap(i,j) / ( 2.0d0 * DelTime ) * ( 1.0d0 + ( r_SSDepth(0) - z_SSDepth(1) ) / xy_SoilHeatDiffCoef(i,j) * xyra_DelRadLFlux(i,j,0,0) ) + xyra_DelRadLFlux(i,j,0,0) / ( r_SSDepth(0) - r_SSDepth(1) ) )
SoilTempATentative = ( 1.0d0 + ( r_SSDepth(0) - z_SSDepth(1) ) / xy_SoilHeatDiffCoef(i,j) * xyra_DelRadLFlux(i,j,0,0) ) * SurfTempATentative + ValueAlpha
if ( SoilTempATentative >= TempCondWater ) then
xyz_DSoilTempDt(i,j,1) = ( SoilTempATentative - xyz_SoilTemp(i,j,1) ) / ( 2.0d0 * DelTime )
xy_DSurfTempDt(i,j) = ( SurfTempATentative - xy_SurfTemp(i,j) ) / ( 2.0d0 * DelTime )
!!$ xy_SoilMoistA(i,j) = &
!!$ & xy_SoilMoistA(i,j) &
!!$ & + LatentHeatFluxByMelt * ( 2.0d0 * DelTime ) / LatentHeatFusion
!!$ xy_SurfSnowA(i,j) = &
!!$ & xy_SurfSnowA(i,j) &
!!$ & - LatentHeatFluxByMelt * ( 2.0d0 * DelTime ) / LatentHeatFusion
xy_DSoilMoistDt(i,j) = xy_DSoilMoistDt(i,j) + LatentHeatFluxByMelt / LatentHeatFusion
xy_DSurfSnowDt(i,j) = xy_DSurfSnowDt (i,j) - LatentHeatFluxByMelt / LatentHeatFusion
else
! if part of snow is melting,
SoilTempATentative = TempCondWater
SurfTempATentative = ( r_SSDepth(0) - r_SSDepth(1) ) * ( r_SSDepth(0) - z_SSDepth(1) ) / xy_SoilHeatDiffCoef(i,j) * ( ( xy_SoilHeatCap(i,j) / ( 2.0d0 * DelTime ) + xy_SoilHeatDiffCoef(i,j) / ( ( r_SSDepth(0) - r_SSDepth(1) ) * ( r_SSDepth(0) - z_SSDepth(1) ) ) ) * SoilTempATentative - xy_SoilHeatCap(i,j) / ( 2.0d0 * DelTime ) * xyz_SoilTemp(i,j,1) - CondHeatFluxA / ( r_SSDepth(0) - r_SSDepth(1) ) )
LatentHeatFluxByMelt = - xy_SoilHeatDiffCoef(i,j) * ( SurfTempATentative - SoilTempATentative ) / ( r_SSDepth(0) - z_SSDepth(1) ) - xyr_RadSFlux(i,j,0) - ( xyr_RadLFlux(i,j,0) + xyra_DelRadLFlux(i,j,0,0) * ( SurfTempATentative - xy_SurfTemp(i,j) ) + xyra_DelRadLFlux(i,j,0,1) * xyz_DTempDt(i,j,1) * ( 2.0d0 * DelTime ) ) - SenHeatFluxA - LatHeatFluxA
xyz_DSoilTempDt(i,j,1) = ( SoilTempATentative - xyz_SoilTemp(i,j,1) ) / ( 2.0d0 * DelTime )
xy_DSurfTempDt(i,j) = ( SurfTempATentative - xy_SurfTemp(i,j) ) / ( 2.0d0 * DelTime )
!!$ xy_SoilMoistA(i,j) = &
!!$ & xy_SoilMoistA(i,j) &
!!$ & + LatentHeatFluxByMelt * ( 2.0d0 * DelTime ) / LatentHeatFusion
!!$ xy_SurfSnowA(i,j) = &
!!$ & xy_SurfSnowA(i,j) &
!!$ & - LatentHeatFluxByMelt * ( 2.0d0 * DelTime ) / LatentHeatFusion
xy_DSoilMoistDt(i,j) = xy_DSoilMoistDt(i,j) + LatentHeatFluxByMelt / LatentHeatFusion
xy_DSurfSnowDt(i,j) = xy_DSurfSnowDt (i,j) - LatentHeatFluxByMelt / LatentHeatFusion
end if
SurfSnowATentative = xy_SurfSnowB(i,j) + xy_DSurfSnowDt(i,j) * 2.0d0 * DelTime
if ( SurfSnowATentative < 0.0d0 ) then
xy_DSurfSnowDt(i,j) = - xy_SurfSnowB(i,j) / ( 2.0d0 * DelTime )
end if
end if
end do
end do
end if
!!$ ! 計算時間計測一時停止
!!$ ! Pause measurement of computation time
!!$ !
!!$ call TimesetClockStop( module_name )
end subroutine PhyImplSDHSnowMeltCorrection
| Constant : | |||
| module_name = ‘phy_implicit_sdh‘ : | character(*), parameter
|
| Constant : | |||
| version = ’$Name: dcpam5-20100224 $’ // ’$Id: phy_implicit_sdh.F90,v 1.1 2010-02-24 08:19:21 yot Exp $’ : | character(*), parameter
|