#### Wind fields in the Martian atmospheric boundary layer obtained by highresolution large eddy simulations

#### \*Kuriki Murahashi<sup>1</sup>,

Kohei Suto<sup>1</sup>, Seiya Nishizawa<sup>2</sup>, Masaki Ishiwatari<sup>1</sup>, Masatsugu Odaka<sup>1</sup>, Kensuke Nakajima<sup>3</sup>, Shin-ichi Takehiro<sup>4</sup>, Ko-ichiro Sugiyama<sup>5</sup>, Hirotaka Ogihara<sup>1</sup>, Yoshiyuki O. Takahashi<sup>6</sup>, Yoshi-Yuki Hayashi<sup>6</sup>

1. Hokkaido Univ., 2. RIKEN/AICS, 3. Kyushu Univ.,

4. Kyoto Univ., 5. National Institute of Tech. Matsue college,6. Kobe Univ.

CPS, Kobe, Japan

# Self introduction

- Doctor course student
- This presentation shows planning of my doctor thesis
- Sorry for be late, because of business trip to Nayoro observatory



© OpenStreetMap contributers



 Dormitory leader of Keiteki-ryo dormitory (2013 – 2014)

It's me!



One third of Keiteki-ryo Dormitory residents (2014)

## Outline

- Introduction
  - Dust in the Martian atmosphere
  - MGCM calculation including dust processes
  - Problems of dust lifting schemes used in MGCM
  - Purpose of this study
- LES Model / Data
- Results
  - Wind fields of the highest resolution results
  - Surface wind stress of various resolution results
  - Wind structures associated with the strongest wind stress
  - Dust flux distribution
- Summary

#### **Dust in the Martian atmosphere**

- Dust in the Martian atmosphere greatly influences optical depth and temperature structure. (Smith, 2009, etc.)
- Various space-time scale dust phenomena exist.



http://mars.nasa.gov/mer/gallery/press/spirit/20050819a.html

#### MGCM calculation including dust processes

Kahre et al. (2006) simulates seasonal variability of dust distribution.



#### **Dust lifting schemes used in MGCM**

- Kahre et al. (2006) uses 2 types of dust lifting parameterization schemes.
  - Wind stress lifting schemes
    - The seasonal variability of dust amount can be simulated.



Kahre et al. (2006)

## Wind stress lifting schemes

KMH scheme (Kahre et al., 2006)

$$F_W = \alpha_W \times 2.3 \times 10^{-3} \tau^2 \left(\frac{\tau - \tau^*}{\tau^*}\right)$$

$$F_W$$
: **Dust flux [kg/(m<sup>2</sup> s)]**

- $\alpha_W$ : Efficiency factor
  - $\tau$  : Surface wind stress [N/m<sup>2</sup>]
  - $\tau^*$ : Threshold value [N/m<sup>2</sup>]

Parameters in Kahre et al. (2006)

| $	au^*$                 | $lpha_W$ |  |
|-------------------------|----------|--|
| 10 × 10 <sup>-3</sup>   | 0.02     |  |
| 22.5 × 10 <sup>-3</sup> | 0.1      |  |
| 35 × 10 <sup>-3</sup>   | 0.45     |  |

- Based on observational results on the Earth (Sahara desert). (Westphal et al., 1987)
- Adjusting to the Martian conditions. (Kahre et al., 2006)
  - Atmospheric density, gravitational acceleration.

## Dust devil lifting schemes

DDA scheme (Newman et al., 2002)

$$F_D = \alpha_D F_s (1-b) \quad b = \frac{p_s^{\chi+1} - p_{con}^{\chi+1}}{(p_s - p_{con})(\chi+1)p_s^{\chi}} \quad \chi \equiv \frac{R}{c_p}$$

- $F_D$ : Dust flux [kg/(m<sup>2</sup> s)]
- $F_s$ : Sensible heat flux [W/m<sup>2</sup>]
- $\alpha_D$  : Efficiency factor [kg/J]

|                       |                 |                | /-   | -          |
|-----------------------|-----------------|----------------|------|------------|
|                       | Surface         |                | Cno  | oific acc  |
| $p_{s}$ :             |                 | D .            | Spe  | cific gas  |
|                       | Pressure [Pa]   | $\mathbf{n}$ : | cons | stant      |
| $\mathcal{D}_{con}$ : | Proceuro at the |                | Croc | alfia kaat |
| 0011                  | Flessure at the | $c_p$ :        | Spe  | cific neat |
|                       | top of PBL [Pa] | -              | cap  | acity      |
|                       |                 |                | Cap  |            |

- Based on the thermodynamics of dust devils as a heat engine. (Rennò et al., 1998)
- Thermal efficiency is used for expressing dust flux.
  - With the higher sensible heat flux, kinetic energy of convection becomes larger.
  - With the higher PBL altitude, the conversion rate of kinetic energy from sensible heat flux becomes larger.
  - Therefore the amount of dust flux increases.

## **Problems of parameterization**

- Adjusting parameters are necessary in order to simulate observational results.
  - Wind stress threshold value should be decreased compared to experimental value. (Greeley and Iversen, 1985)
- Schemes have been developed without considering details of wind structures.
- Wind stress schemes are suspected to include effects of dust devil schemes.

## Purpose of this study

- Our purpose is to reconsider the schemes with examining relationship between wind microstructures such as dust devils and large scale convective structures.
  - What are characteristics of the wind field?
  - How much is the strength of the wind stress?
- In this study, we examine LES with several km domain.
  - Our results can be applied to MGCM.
  - The most high-resolution MGCM can resolved up to several km. (~ 11 km; Takahashi et al., 2011)

### The highest resolution LES for the Mars

- Nishizawa et al. (2016)
  - Domain : Horizontal 19.2 km, Vertical 21 km
  - Horizontally periodic boundary conditions.
  - Resolution 5, 10, 25, 50, 100 m
    - About 4.8 x 10<sup>10</sup> grid points in 5 m resolution.
      - (1 time snapshot has 1.2 TB !)
- Statistics on vortices are investigated.
  - e.g. vortex radius distribution of 62.5 m height at LT = 14:30

#### Vorticity distribution





## Model

- SCALE-LES (Nishizawa et al., 2015; Sato et al., 2015)
  - https://scale.aics.riken.jp/index.html
  - 3D fully compressible non-hydrostatic equations model.
  - Developed by RIKEN/AICS.
- Turbulence process
  - Smagorinsky-type eddy viscosity model (Brown et al., 1994; Scotti et al., 1993).
- Surface model
- Louis-type bulk method (Louis 1979, Uno et al., 1995).

## Settings

- Thermal forcing
  - The heating rate and surface temperature are given by one-dimensional simulation by Odaka et al. (2001)
- Initial State
- 10 100 m resolution : Stable stratified stationary atmosphere with tiny random temperature perturbations.
- 5 m resolution : interpolated 10 m result on LT = 14:00
- Integration period
  - 10 100 m resolution : from LT = 0:00 24:00 (LT : Local Time)
  - 5 m resolution : from LT = 14:00 15:00

## Analysis in this study

- In this analysis, using LT = 14 : 30 data.
  - The same as Nishizawa et al. (2016) analysis.
- Analysis procedure
  - Merging original data sets.
    - ➢ 5 m resolution original data files consist 7,200 files.
    - It takes a few hour.
    - Each data are about 240 MB.
    - Script language Ruby is used.
  - Making
    - Horizontal distribution
    - Vertical distribution
    - Histogram ...etc.

#### Vertical wind (bottom level z = 2.5 m)

Vertical wind [m/s] (horizontal)



kB

0 0 Upward wind region forms network-like structures.



#### **Convective cellular structures**



#### Surface wind stress

Vertical wind [m/s] (horizontal) Surface wind stress [Pa] (horizontal)



#### Vertical wind fields of each simulation 5 m resolution (horizontal) 10 m resolution

25 m resolution



19.2 km

#### Surface stress probability density distribution



Bin width : 0.002 Pa

- Result of 5 m resolution is greatly differs from those of more than 10 m resolution results.
- Only 5 m resolution result has the points exceeding threshold value.
  - Threshold value 0.03 Pa obtained by experimental results.

(Greeley and Iversen, 1985)



#### Horizontal distribution of dust flux

Dust flux is calculated using wind stress scheme (KMH scheme) of Kahre et al. (2006)



## Summary

- Dust lifting parameterization schemes in MGCM have problems.
  - Schemes have been developed without considering details of wind structures.
- Our purpose is to reconsider schemes with examining wind structures.
- We are investigating high-resolution LES for considering validity of parameterization.
  - An isolated vortex taller than 1,000 m exists at the point with the strongest wind stress in each resolution result.
  - Only 5 m resolution result has the points exceeding threshold value of surface wind stress.

### References

- Greeley, R., and J. D. Iversen, 1985: Wind as a Geological Process on Earth, Mars, Venus, and Titan., Cambridge Univ. Press., 333 pp
- Kahre, M. K., et al., 2006: Modeling the Martian dust cycle and surface dustreservoirs with the NASA Ames general circulation model, J.G.R, 111, 25
- Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere, Boundary Layer Meteorol., 17, 187–202.
- Mulholland, D. P., et al., 2013: Simulating the interannual variability of major dust storms on Marsusing variable lifting thresholds, Icarus, 223, 344-358
- Nishizawa, S., et al., 2016: Martian dust devil statistics from high-resolution largeeddy simulations, Geophys. Res. Lett., 43, 4180–4188
- Odaka M., 2001: A numerical simulation of Martian atmospheric convection with a two-dimensional anelastic model: A case of dust-free Mars, Geophys. Res. Lett., 28, 895-898
- Rennò, N. O., et al., 1998: A simple thermodynamical theory for dust devils, A.M.S., 55, 3244-3252
- Smith, M. D., 2009: THEMIS observations of Mars aerosol optical depth from 2002–2008, Icarus, 202, 444-452
- Westphal, D. L., et al., 1987: A two-dimensional numerical investigation of the dynamics and microphysics of saharan dust storms, J.G.R., 92, 3027-3049
- Wilson, R. J., and Hamilton, K., 1996: Comprehensive model simulation of thermal tides in the Martian atmosphere, J.A.S, 53, 9, 1290-1326