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Introduction

• Background
• The purpose of this study



Background
• Many exoplanets have been discovered by recent observations, and the 

diversity of the surface environments is expected there. 

• In order to obtain a deeper understanding of the climate diversity, some 
numerical studies have been performed. 

Ishiwatari et al. (2007) Rose (2015) • To investigate the diversity and 
stability of climates on terrestrial 
planets with water, climates on an 
idealized planet globally covered 
with ocean (ocean planet) have 
been explored numerically. 

• e.g. Solar constant dependence 

• Ishiwatari et al. (2007)

• Atmospheric general 
circulation is only considered. 

• Rose (2015)

• Atmospheric and oceanic 
general circulation is both 
considered. 
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Background
• Many exoplanets have been discovered by recent observations, and the 

diversity of the surface environments is expected there. 

• In order to obtain a deeper understanding of the climate diversity, some 
numerical studies have been performed. 

Ishiwatari et al. (2007) Rose (2015) 
• To investigate the diversity and 

stability of climates on terrestrial 
planets with water, climates on an 
idealized planet globally covered 
with ocean (ocean planet) have 
been explored numerically. 

• Remarkable results from a 
coupled atmosphere-ocean-
sea ice model in Rose (2015) 

• ��	���������
�����������	�
���	�	������	���������

• ����������		�����	�����	�
�		�����������	�
������ solar constant
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Purpose of this study
• We develop a coupled atmosphere-ocean-sea ice model to 

explore ocean planet climates considered ocean general 

circulation explicitly. 

• Using our developing coupled model, we investigate 

dependence of ocean planet climates on solar constant. 

• The atmospheric setting in Ishiwatari et al. (2007) is extended. 

• We also examine runaway greenhouse state which seems not to be found 

in Rose (2015). 

• By comparing the results from swamp/slab ocean experiments, we 

evaluate the influence of oceanic heat capacity and oceanic heat transport 

on determining ocean planet climates. 



Model and Experimental setup

• A climate model for ocean planet
• Experimental setup



A climate model for ocean planet

• Ocean general circulation model

• Dynamical process

• Axisymmetric hydrostatic boussinesq equations

• Turbulent process: 

• Redi (1982), Gent and McWilliams (1990), Marotzke (1991)

• Spatial resolution: 64x60

• Sea ice model

• Thermodynamics process: 3-layer model (Winton, 2000)

• The horizontal transport of sea ice is parametrized 

with horizontal diffusion. 

• Spatial resolution: 64x3

• Atmospheric general circulation model: DCPAM

• Composition: dry air, water vapor

• Dynamical process

• 3-dimensional primitive equations

• Radiation process: gray radiation (Nakajima et al., 1992)

• Turbulent process: Mellor and Yamada (1982), Louis et al. (1982)

• Condensation process: Manabe et al. (1965), cloud life time is 0 s. 

• Spatial resolution: 64x32x16or32 (T21L16 or T21L32)



A climate model for ocean planet
• Atmospheric general circulation model: DCPAM

• Composition: dry air, water vapor
• Dynamical process

• 3-dimensional primitive equations
• Radiation process: gray radiation (Nakajima et al., 1992)

• Turbulent process: Mellor and Yamada (1982), Louis et al. (1982)
• Condensation process: Manabe et al. (1965),  cloud life time is 0 s. 
• Spatial resolution: 64x32x16or32 (T21L16 or T21L32)

• Ocean general circulation model
• Dynamical process

• Axisymmetric hydrostatic boussinesq equations
• Turbulent process: 

• Redi (1982), Gent and McWilliams (1990), Marotzke (1991)
• Spatial resolution: 64x60

• Sea ice model
• Thermodynamics process: 3-layer model (Winton, 2000)

• The horizontal transport of sea ice is parametrized 
with horizontal diffusion. 

• Spatial resolution: 64x3

• Coupler
• exchange data 
between models with  
Jcup (Arakawa et al., 2011)

Using periodically 
synchronous coupling 
(Sausen and Voss, 1998), the 
temporal integration 
is basically performed 
over 30,000 years. 



Experimental setup
• The range of solar constants(S)

• 900�1600 W/m2   (S=1380 W/m2 is set in control case)

• Planetary parameters
• The value of the parameters (e.g., planetary radius) is same as that on present Earth. 

• No seasonal and day cycles
• The annual and daily averaged incoming solar flux is given in top of atmosphere.  

• Surface albedo
• 0.5 when surface temperature is below 263 K, otherwise 0 (step-function). 

• Initial condition
• For most of cases, a rest atmosphere and ocean with 280K. 

• To find multiple solutions, partially ice-covered, snow ball and runaway greenhouse 
solutions are also used. 

oceanic
heat capacity

oceanic 
heat transport

dynamic ocean* � �

60 m slab ocean � �

swamp ocean � �

* ocean general circulation 
model is used. 

• Ocean configurations



Numerical results

• control case (S=1380 W/m2, dynamic ocean)
• solar constant dependence experiments



Result (control): time series

• The coupled system 
reaches a statistically 
equilibrium state after a 
few ten thousand years.

• After the system reached 
equilibrium, periodic 
oscillation can be seen. 
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We show some figures of 
statistically equilibrium 
state obtained by averaging 
fields over the final 20,000 
years. 



Result: comparison with atmospheric fields on present Earth

This study Present Earth

zonal velocity [m/s]  

2

zonal velocity [m/s]

11

4

meridional circulation [Sv]meridional circulation [Sv]

(annual and zonal mean of NCEP/NCAR reanalysis data)

3

2 2

1 1

333 4 4 4

22

p
r
e
s
s
u
r
e

p
r
e
s
s
u
r
e

latitude latitude

[hPa]

[hPa] [hPa]

[hPa]

Some fundamental atmospheric features on present Earth are represented 

in our using atmospheric setting. 

• � westerly jet, � surface wind, � Hadley cell, � Ferrel cell …



Potential Temp. [K]

This study Ocean planet 

The patterns of calculated ocean fields are quite similar with results obtained 
from previous studies. 

• � thermocline, � halocline, � stratified structure under sea-ice, � uniform profile in deep ocean ..
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[result with a coupled atmosphere-ocean-
sea ice model in Marshall et al. (2007)]

Result: comparison with oceanic fields in a previous study
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• The total (atmosphere plus 
ocean) heat transport
reaches a maximum 3 PW 
at 30�N/S. 

• This amount of heat 
transport is about half 
of that in present Earth 
and previous studies. 

• Despite nonexistence of 
the land, the latitudinal 
profiles and partitioning of 
meridional heat transports 
are similar to that on 
present Earth. 

Trenberth and Caron (2001) 

6

-6

Present Earth

Atm+Ocn
Atm

Ocn

This study

Result: meridional heat transport

Atm+Ocn
Atm

Ocn



Numerical results

• control case (S=1380 W/m2, dynamic ocean)
• solar constant dependence experiments



• We have obtained a climatic 
regime diagram for a coupled 
system possible to reach 
runaway greenhouse states. 

• The number of climatic states 
is three: snowball, partially
ice-covered and runaway 
greenhouse states. 

• Ice-free state is not found. 

• These climatic states coexist 
for a solar constant between 
about S=1200�S1500 W/m2 .

• Small dependence of partially 
ice-covered states on initial 
condition exists (shaded 
region). 

Results: climatic regime diagram (dynamic ocean case)
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Rose (2015) This study

Rose (2015)

• The branch of 
partially ice covered 
state is not split 
unlike the regime 
diagram in Rose 
(2015).

• Compared to the 
result in Rose (2015), 
the slope of branch 
for partially ice-
covered state is 
gentle which is 
related to weak 
meridional heat 
transports.  

Results: climatic regime diagram (dynamic ocean case)
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Results: climatic regime diagram for swamp/slab/dynamic 
ocean experiments

• Most of the ice-line latitudes 
for partially ice-covered states 
are nearly independent of the 
oceanic treatments. 

• In these experiments, 
oceanic capacity and 
oceanic heat transport 
have no essential impact 
on determining the 
climates. 

• In slab and dynamic ocean 
experiments, small 
dependence of partially ice-
covered states on initial 
condition can be seen. 
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(* The branches of runaway greenhouse and snowball states in slab
ocean configuration are being calculated now.)



Discussion: Why does the difference between oceanic treatments 
have no essential influence on climates?

• In fact, there are some differences of surface 
temperature latitudinal profiles between three 
ocean treatments. 

• The surface energy budget partitioning 
also changes significantly.

• But, heating due to ocean heat transport is not 
enough to retreat sea ice and maintain ice-line. 

• The magnitude itself or meridional 
convergence is weak.

• Furthermore, in radiative and cloud setting of 
INTH07, unless ice-line moves, the profile of 
absorbed solar radiation does not change.  

• Then, a total of atmospheric and oceanic heat 
transports is independent of oceanic treatments. 

• Consequently, we consider that the introduction 
of oceanic heat capacity and transport have no 
essential influence on planetary climates. 
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Summary
• Using our developing coupled atmosphere-ocean-sea ice model with the atmospheric

setting in Ishiwatari et al. (2007), we investigate the dependence of ocean planet 

climates on solar constant. 

• In control case (S=1380W/m2), our model represents typical features of atmospheric 

fields on present Earth and oceanic fields obtained by previous studies. 

• Increasing and decreasing the solar constant, we have obtained a climatic regime 

diagram for a coupled system possible to reach runaway greenhouse states. 

• Snowball, partially ice-covered and runaway greenhouse states are found. 

• These states coexist over about S=1200�S1500 W/m2.

• In order to examine the role of ocean more closely, we also conduct 

swamp/slab/dynamic ocean experiments. 

• In the experimental setting of INTH07, the introduction of oceanic heat capacity 

and oceanic heat transport has no essential impact on  determining ocean planet 

climates. 
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Appendix 1: climatic regime diagram 
obtained with solar constant experiments 
in the case of using surface albedo 
scheme in INTH07
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Appendix 2: Comparison with atmospheric 
fields obtained from three oceanic 
configurations
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Appendix 3: Other atmospheric fields in
control case of dynamic ocean experiment
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