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Section 4.

Core dynamics: Rotation and Magnetic fields

4.1 Rotating magnetoconvection
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Lorentz force

We have seen how magnetic fields can be created by dynamo
action, but how do they affect the fluid flow?

A region of fluid in which there is a current density j flowing in a
magnetic field B experiences a body force j× B. This force is
called the Lorentz force. It arises because electrons and ions
moving in a magnetic field experience a force.

The Navier-Stokes equation in a rotating frame then becomes

∂u

∂t
+ 2Ωẑ× u = −1

ρ
∇p + gαT ′ẑ +

1

ρ
j× B + ν∇2u. (4.1.1)

Note that since µj = ∇× B,

1

ρ
j× B =

1

µρ
(∇× B)× B. (4.1.2)
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Effects of Lorentz force

The Lorentz force can impede convection when it is strong. This is
why sunspots are darker than the solar photosphere. Strong
magnetic fields in the sunspot block convective heat transport
there making the sunspot relatively dark.

The Lorentz force can act as a restoring force, giving rise to waves,
called Alfvén waves.

When combined with the Coriolis force, the Lorentz force gives rise
to new waves, MAC waves (MAC: Magnetic, Archimedean and
Coriolis forces).

Kinematic dynamos grow exponentially: the Lorentz force stops
them growing by changing the flow, causing the dynamo to
saturate at a finite field strength.
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Rotating magnetconvection: plane layer

The rotating plane layer with a vertical magnetic field

Rotation and magnetic field parallel to gravity, centrifugal
acceleration negligible.

A Rayleigh-Bénard convection cell with a liquid metal (Gallium or
liquid sodium) is put on a rotating turntable. Strong vertical
magnetic field imposed externally.
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Plane layer model

Chandrasekhar, 1961. The equation of motion is

∂u

∂t
+ 2Ωẑ× u = −1

ρ
∇p + gαT ′ẑ +

1

ρ
j× B + ν∇2u. (4.1.3)

The temperature equation is

∂T

∂t
+ u · ∇T = κ∇2T , (4.1.4)

and the induction equation is

∂B

∂t
= ∇× (u× B) + η∇2B, (4.1.5)

with
∇ · u = 0, ∇ · B = 0 (4.1.6)

since the fluid is incompressible.
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Linearisation

Since the imposed field is uniform, B = B0ẑ, which has no current.

Then j× B = j× B0ẑ, where j is the current induced by
convection, and we assume the magnetic field generated by
convection is b, which is small compared to B0ẑ.

The induction equation is then

∂(B0 + b)

∂t
= ∇× (u× (B0 + b)) + η∇2(B0 + b), (4.1.7)

which linearises to

∂b

∂t
= ∇× (u× B0ẑ) + η∇2b = B0

∂u

∂z
+ η∇2b. (4.1.8)
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Non-rotating case 1.

With Ω = 0 the linearised equations are then

∂u

∂t
= −1

ρ
∇p + gαT ′ẑ +

1

ρ
j× B0ẑ + ν∇2u, (4.1.9)

∂T ′

∂t
= βuz + κ∇2T ′, (4.1.10)

The z component of the induction equation is

∂bz

∂t
= B0

∂uz

∂z
+ η∇2bz . (4.1.11)

The z-component of the double curl of the momentum equation is
then

∂

∂t
∇2uz = gα∇2

HT ′ +
B0

µρ

∂

∂z
∇2bz + ν∇4uz . (4.1.12)

The simplest case is to look for steady neutral solutions with no
time-dependence, so the time-derivative terms are zero.
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Non-rotating case 2.

We can then eliminate ∇2bz from (4.1.12) using (4.1.11), to get

0 = gα∇2
HT ′ − B2

0

µρη

∂2uz

∂z2
+ ν∇4uz (4.1.13)

and we eliminate T ′ using the temperature equation (4.1.10). We
non-dimensionalise as usual, and two dimensionless parameters
emerge.

R =
gα∆Td3

κν
, Q =

B2
0d2

µρνη
, (4.1.14)

are the usual Rayleigh number and Q is called the Chandrasekhar
number, which measures the field strength. With stress-free,
constant temperature boundaries, uz = sinπz exp i(kxx + kyy) is a
solution, and if a2 = k2

x + k2
y , we get

Rsteady =
π2 + a2

a2
[(π2 + a2)2 + π2Q], (4.1.15)

as the dispersion relation.
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Non-rotating magnetoconvection results

This compares with the rotating case result, (2.5.16), with Q in
place of E−2. A similar analysis shows that as Q →∞, minimum
Rsteady occurs when

a ∼
(
π4

2

)1/6

Q1/6, Rasteady ∼ π2Q. (4.1.16)

So since a becomes large as magnetic field increases we get tall
thin columns.

Since the critical Rayleigh number increases as Q →∞, magnetic
field suppresses convection. This impeding effect of the magnetic
field is why sunspots are dark, the heat transport being reduced.

If κ < η, normally the case in planetary cores, steady modes are
the first to onset, but if κ > η oscillatory modes are possible.
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Alfvén waves

In the limit of no diffusion and uniform temperature T ′ = 0,
equations (4.1.11) and (4.1.12) are

∂bz

∂t
= B0

∂uz

∂z
, (4.1.17)

and the z-component of the double curl of the momentum
equation is then

∂

∂t
∇2uz = +

B0

µρ

∂

∂z
∇2bz . (4.1.18)

Look for wave like solution ∼ exp i(kxx + kyy + kzz − ωt), and we
find wave solutions with

ω2 =
B2

0

µρ
k2

z (4.1.19)

which are Alfvén waves travelling with the Alfvén speed

c =
ω

kz
=

B0√
µρ
. (4.1.20)
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Magnetic field lines as stretched strings

Since the waves travel along the field lines, it is helpful to think of
magnetic field lines like stretched strings.

If you give the field an initial perturbation, it responds by sendind
waves along the field lines, just as a stretched string would.

The Lorentz force can be written

1

µ
(∇× B)× B = (B · ∇)B/µ−∇B2/2µ. (4.1.21)

The first term is called the curvature force. It is active when field
lines are curved.
The second term is called magnetic pressure, and it adds to the
gas pressure.
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Convection with rotation and magnetic field 1.

We go back to equations (4.1.3) to (4.1.6) and linearise

∂u

∂t
+ 2Ωẑ× u = −1

ρ
∇p + gαT ′ẑ +

1

ρ
j× B0ẑ + ν∇2u, (4.1.22

∂T ′

∂t
= βuz + κ∇2T ′, (4.1.23)

∂b

∂t
= B0

∂u

∂z
+ η∇2b. (4.1.24)

Vorticity equation is

∂ζ
∂t
− 2Ω

∂u

∂z
= gα∇× T ′ẑ +

B0

ρ

∂j

∂z
+ ν∇2ζ, (4.1.25)

∂j

∂t
= B0

∂ζ
∂z

+ η∇2j. (4.1.26)

We might expect rotation and magnetic together to be even more
stabilising, but this is not true.
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Convection with rotation and magnetic field 2.

We look for steady solutions as before, with the usual horizontal
dependence ∼ exp i(kxx + kyy) with k2

x + k2
y = a2,

and non-dimensionalise using d , d2/η as the unit of length and
time.

The dimensionless parameters appearing are now

Λ =
B2

0

µρΩη
, E =

ν

Ωd2
, R∗ =

gα∆Td

κΩ
. (4.1.27)

Λ is called the Elsasser number, and Λ ∼ 1 in planetary cores. E is
the Ekman number we had before (small in planets).

The modified Rayleigh number R∗ = ERa. This is still large in
planets, but not as large as Ra.
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Convection with rotation and magnetic field 3.

If time-dependence is retained, two other Prandtl numbers appear,

Pr =
ν

κ
, Pm =

ν

η
. (4.1.28)

The hydrodynamic Prandtl number and magnetic Prandtl number
respectively.

The magnetic Prandtl number is Pm ∼ 10−5 in planetary cores,
whereas Pr ≈ 0.1.

If the buoyancy is due to light material rather than temperature,
the effective Prandtl number (the Schmidt number ν/κdiff ) is
large.
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Ordinary differential equations in z

Our equations now become

E (D2 − a2)ζ + 2Duz + ΛDjz = 0, (4.1.29)

E (D2 − a2)2uz − 2Dζ + Λ(D2 − a2)Dbz − R∗a2T ′ = 0, (4.1.30)

(D2 − a2)bz + Duz = 0, (4.1.31)

(D2 − a2)jz + Dζ = 0, (4.1.32)

(D2 − a2)T ′ + uz = 0, (4.1.33)

where ζ = ζ · ẑ, D = d/dz and a is the horizontal wavenumber.
The case with stress-free, electrically insulating and constant
temperature boundaries,

D2uz = uz = Dζ = jz = T ′ = 0 on z = 0, 1, (4.1.34)

gives uz = sinπz solutions.
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Rotating, magnetic dispersion relation

The expression for the modified Rayleigh number is now

R∗ =
π2 + a2

a2

[
[E (π2 + a2)2 + Λπ2]2 + 4π2(π2 + a2)

E (π2 + a2)2 + Λπ2

]
. (4.1.35)

If Λ is very small, this reduces to the purely rotating case, for which
at small E we have a ∼ E−1/3 and R∗ ∼ E−1/3, which is large.

But if Λ is O(1), then the E terms are negligible, and then a and
R∗ are also O(1), which is smaller than O(E−1/3). So the effect of
the magnetic field is to reduce the critical Rayleigh number, i.e. it
helps convection.

The magnetic field is breaking the Taylor-Proudman constraint,
and so allowing convection to occur on larger horizontal
length-scales. This could be important in planetary dynamos.
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Field and rotation axes at different angles

The classic problem has the rotation vector and the magnetic field
aligned with gravity. There have been studies where the rotation
vector and the magnetic field are no longer aligned.

In the case where they are mutually perpendicular, appropriate
near the equator of a planet, rolls can line up either with the
rotation, the field or neither, depending on the parameters.

These problems are complicated because of the many parameters
and angles involved, but they all reduce to systems of ODEs, which
are straightforward to solve numerically.
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Spherical geometry

The problem has also been considered in spherical geometry. This
is more challenging numerically, but the overall picture is similar.

It is normally the case that there is a critical Elsasser number Λc .

For Λ < Λc rotation is dominant, and we get tall thin columns and
a high critical Rayleigh number.

For Λ > Λc magnetic field breaks the Taylor-Proudman constraint,
and wider columns occur, with a lower critical Rayleigh number.

For more complicated magnetic fields, magnetically driven
instabilities can occur.
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4.2 Waves in rotating MHD
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Geomagnetic field and Secular Variation

Geomagnetic field is described in terms of the Gauss coefficients of
the spherical harmonic expansion outside the core B = −∇Ψ.

Ψ = rs

∞∑
n=1

m=n∑
m=0

( rs

r

)n+1
Pm

n (cos θ)(gm
n cos mφ+ hm

n sin mφ).

Magnetic field Br measured at the
surface, but mantle insulating, so
can extrapolate field Br to
Core-Mantle boundary (CMB).

Radial geomagnetic field at CMB in
1980 and 2000. Wave-like behaviour
seen.
Small changes occur in 20 years.
Secular variation is first
time-derivative of geomagnetic field.
Some Westward drift is visible.
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Types of waves in the core

P-waves
Inertial waves
Torsional waves
Magnetic Rossby waves

S-waves
Internal gravity waves
MAC waves
Dynamo waves

So many different waves! How do we make sense of them?

S-waves and P-waves are seismic waves, excited by earthquakes
and detected by seismometers. Travel very fast, 3-8 km/sec.
All except S-waves occur in a fluid. P-waves depend on
compressibility. All the other fluid waves occur in incompressible
fluid, ∇ · u = 0.

Inertial waves occur in rotating fluids, internal gravity waves in
density stratified fluids.

MAC waves, Torsional waves and magnetic Rossby waves are all
rotating MHD waves. Dynamo waves are the kinematic waves in
dynamo theory.
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Cartesian box model for core waves

We consider a small piece of core, rotating with angular velocity
Ωẑ, with uniform magnetic field B0 (any direction).

We then give the fluid a small velocity perturbation of the form
u = uo exp i(k · x− ωt) wavevector k, frequency ω.

Wave travels in k-direction. ∇ · u = 0 so u0 · k = 0, transverse
waves.

We insert the wave form into the equation of motion and the
induction equation, then work out the dispersion relation between
ω and k.
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Equation of motion

Linearised equation of motion for adiabatic inviscid fluid

∂u

∂t
+ 2Ω× u = −∇p′/ρ +

1

ρ
j× B0 (4.2.1)

Inertia Coriolis accn Pressure Lorentz force

If fluid is stably stratified (not adiabatic) there is an extra
buoyancy term.

Magnetic field equation (induction equation)

∂b

∂t
= (B0 · ∇)u + η∇2b, µj = ∇× b, (4.2.2)

Ignore magnetic diffusion in simple theory (magnetic Reynolds
number 1000).
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Dispersion relation for rotating MHD waves 1.

Eliminate pressure by taking curl of equation of motion, to get the
vorticity ζ equation.

∂ζ

∂t
− 2(Ω · ∇)u =

1

ρ
(B0 · ∇)j, ζ = ∇× u. (4.2.3)

Take time-derivative and eliminate j using the curl of the induction
equation

∂2ζ

∂t2
− 2(Ω · ∇)

∂u

∂t
=

1

µρ
(B0 · ∇)2ζ, (4.2.4)

Now insert u = uo exp i(k · x− ωt) to get(
(B0 · k)2

µρ
− ω2

)
ζ = 2(Ω · ∇)

∂u

∂t
(4.2.5)

Now take the curl of this, using ∇× ζ = −∇2u, to get

−
(

(B0 · k)2

µρ
− ω2

)
∇2u = 2(Ω · ∇)

∂ζ

∂t
(4.2.6)

and now use (4.2.5) to get
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Dispersion relation for rotating MHD waves 2.

the dispersion relation

4ω2(Ω · k)2 =

(
(B0 · k)2

µρ
− ω2

)2

k2,

with solution ω =
(Ω · k)±

√
(Ω · k)2 + k2(B0 · k)2/µρ

|k|
. (4.2.7)

There are a lot of waves in this formula!

Start by setting B0 = 0. Then

ω =
2(Ω · k)

|k|
= ωc . (4.2.8)

These are Poincaré waves or inertial waves. Period generally a bit
longer than 2π/2Ω = 12 hours.
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MC waves

Now restore B0. Plus sign gives fast magneto-inertial waves.
These waves travel faster than the inertial waves, because the
magnetic field adds to the restoring force.
Minus sign is more interesting, define

ωM =
(B0 · k)

(µρ)1/2
. (4.2.9)

2π/ωm ∼ 6 years in the core. This is the Alfvén time, the time it
takes for an Alfvén to go back and forth in the core.

Generally in planets ωC >> ωM .

We can now write

ω =
(Ω · k)±

√
(Ω · k)2 + k2(B0 · k)2/µρ

|k|
.

as

ω =
ωc

2
± ωc

2

√
1 +

4ω2
m

ω2
c

. (4.2.10)
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Slow MC waves

Then binomial expansion gives

ω = ωMC =
ω2

M

ωC
+ ... (4.2.11)

which in general corresponds to a period of thousands of years.

These are the slow MC waves. If the buoyancy term is included
they become MAC waves (M magnetic, A Archimedean, C
Coriolis). Too slow to see directly in the SV signal, but may be
important on dynamo time-scales.

(4.2) Waves in rotating MHD 28/69



Slow magnetic Rossby waves

Recall that quasi-geostrophic motions with kz small can have
periods of months rather than days, i.e. smaller ωC .

So for these waves ωMC = ω2
M/ωC is larger than usual, so periods

may be hundreds of years or maybe even just decades.

These are the slow magnetic Rossby waves, a special QG class of
the slow MC waves.

Hide showed that in spherical
geometry these slow magnetic
Rossby waves have a
quasi-geostrophic columnar
structure.
Recently shown (Hori et al. 2015,
2017) that these occur in dynamo
simulations and may be seen in the
SV signal.
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Magnetic Rossby Waves

Magnetic Rossby waves in a sphere can be solved exactly for the
special Malkus field B0 = B0sφ̂. Cylindrical coordinates (s, φ, z).

Not very Earth-like field, but gives idea of what they look like.

The solution is too complex to go through here: details in Malkus
1967, J Fluid Mech. 28, p793.
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Magnetic Rossby Waves
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with m = 8 (exp imφ). Malkus
field B0 = B0sφ̂. Cylindrical
coordinates (s, φ, z).

For each m there are modes with
Ns rolls in the s-direction and Nz

rolls in the z-direction. Magnetic
Rossby waves have Nz = 1.

Modes which have Ns large and m moderate have only a small
amount of vortex stretching, so have frequencies faster than the
ten thousand year period of ‘normal’ MC waves.
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4.3 Torsional waves in the core
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Rotating MHD waves: Torsional Oscillations

There is a special class of waves with Ω · k = 0. They are
geostrophic waves, with the Coriolis force balanced entirely by
pressure gradient. These modes don’t stretch the vortex lines. The
restoring force is just Lorentz force, so these are torsional
oscillations (TOs). In the Earth’s core, they have a period of about
6 years.

Torsional waves transport angular momentum. This gets
transferred to the mantle, resulting in small but observable length
of day changes.
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Torsional oscillation observations

(a) Gillet et al 2010: (b) Holme & de Viron 2013

(a) The axisymmetric part of uφ constructed from observations of
the geomagnetic field.
(b) Length-of-day variations. Since total angular momentum is
conserved, torsional waves change the mantle rotation rate.
An approximately six year period is seen in both data sets. Waves
propagate out from the tangent cylinder, the cylinder surrounding
the Earth’s solid inner core.
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Dynamo model equations

∂u

∂t
+ (u · ∇)u = −Pm

E
[∇p + 2ẑ× u− (∇× B)× B]

+
Pm2Ra

Pr
T r + Pm∇2u (4.3.1)

∂T

∂t
+ (u · ∇)T =

Pm

Pr
∇2T + ε,

∂B

∂t
−∇× (u× B) = ∇2B

(4.3.2, 3)

∇ · u = 0, ∇ · B = 0 (4.3.4)

E =
ν

ΩD2
, Ra =

gα|ε|D5

νκη
, Pr =

ν

κ
, Pm =

ν

η
. (4.3.5)

Boundary conditions used: no-slip, fixed flux; insulating magnetic.
Zero compositional flux at CMB, uniform sink in interior.
Parameters used: E ∈ [10−6, 10−4], Ra/Rac = 8.3, Pr = 1,
Pm ∈ [1, 5], radius ratio = 0.35 These give ‘Earth-like’ dynamo
models: basically dipolar but with an appropriate amount of
reversed flux patches.
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Torsional Oscillations movie

Time-lapse movie of the axisymmetric part of uφ on a meridional
section. E = 10−5.

The solid inner core of the Earth doesn’t take part in the
oscillations in these simulations.
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Detecting Torsional Oscillations in the simulations

Alfvén wave equation in spherical geometry is

∂2

∂t2

(uφ
s

)
=

1

s3h

∂

∂s

(
s3hUA

2 ∂

∂s

(uφ
s

))
(4.3.6)

where UA
2 = 〈Bs

2/µρ〉, the bar denoting φ average and angle
brackets z-average. h(s) is height of cylinder.

We run the dynamo simulation, and when initial transients have
gone, we run for a further time τ , and evaluate UA from Bs , the
field averaged over time τ .

We make plots in the t-s plane of the fluctuating part of uφ, i.e.
u′φ = uφ − ũφ where ũφ is the time-average over the whole τ run.

We then look for features in u′φ propagating with the Alfvén speed.
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Torsional Oscillations detected

Left: Inside Tangent Cylinder North. Right: Inside Tangent
Cylinder South. 〈uφ〉′, E = 10−4, Pm = 5. White curves have
gradient UA. Similar pictures for E = 10−5.

Plus points: torsional oscillations found in dynamo simulations.
Mostly (but not exclusively) travel outwards. When field is scaled
to observed Br at the CMB, travel time from tangent cylinder to
equator is about 3 years, similar to Gillet et al. data.

Minus points: Origin inside the tangent cylinder rather than at the
TC. Waves not as periodic as suggested by the Gillet et al. data.

(4.3) Torsional waves in the core 38/69



Magnetoconvection simulations

In geodynamo simulations the importance of the Reynolds stress is
overestimated: kinetic and magnetic energy is typically similar,
whereas magnetic energy is much larger than kinetic energy in the
core.

Also, the need to generate a magnetic field places severe
restrictions on the accessible parameter space, e.g. very expensive
to lower Pm.

So we used Magnetoconvection simulations. Same code, but
change magnetic boundary condition: impose a dipole magnetic
field at the core-mantle boundary and/or inner-core boundary.

Saves CPU time: don’t have to wait for field to build up. Allows
lower E , much lower Pm and can get into dominant magnetic
energy regime.
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Magnetoconvection results

E = 5× 10−6,Pm = 0.1,Ra = 5Rac ,Λ ≈ 100.

Left: u′φ contours. Right: F ′L contours. F ′R negligible.

In this strong field, low E case, TO’s are much more periodic, and
originate from the tangent cylinder and propagate outwards. No
significant reflection.
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Summary on Torsional Oscillations

TOs observed in the core from secular variation and LOD signal.

Can be modelled using dynamo and magnetoconvection codes.

They originate from quite small scale (∼ 400 km) convection,
which has turnover time and period ∼ 6 years.

The convection is broad-band in azimuthal wavenumber and has
an m = 0 component.

The convection disturbs the TC shear layer, and this forces the
TOs which propagate outwards.
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4.4 Magnetic Rossby waves in the core?
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Secular Variation: waves or flow?

We now consider the nonaxisymmetic modes and their connection
with the secular variation.

Atlantic hemisphere

• Are these patches of magnetic field advected
by an approximately steady flow, or are they
magnetic Rossby waves?

• Most, but not all of the signal can be fitted
with a steady flow, the eccentric gyre, shown
in equatorial plane

• This flow is believed to be fairly
z-independent. Carries the equatorial flux
patches westward in the Atlantic hemisphere,
while flow is eastward under the Pacific.
Recent evidence of fast flow at high latitudes
under Siberia.

• There are definite features which cannot be
explained by a steady flow.
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Magnetic Rossby waves in a thick shell

The axial z-component of the vorticity equation is

ρ
dζ

dt
− 2ρΩ

∂u′z
∂z

= êz · ∇ × (j ′ × B̃) (4.4.1)

where ζ ′ = ∇× u′ is the vorticity and B̃ is the mean field.
In the simulations the azimuthal wavelength is shorter than the
radial or axial wavelengths, or the mean length scales. We
integrate over z , and use ζ ≈ −(1/s)(∂u′s/∂φ) to get

d

dt

[
d

dt

1

2H

∫ +H

−H

1

s

∂u′s
∂φ

dz − 2Ωs u′s
r2
o − s2

]
=

1

2ρµ0H

∫ +H

−H

B̃2
φ

s3

∂3u′s
∂φ3

dz

(4.4.2)
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Magnetic Rossby waves in a thick shell

Look for waves exp{i(mφ− ωt)}.
Magnetic Rossby waves have negligible inertial term, so the most
right-hand term can be neglected.

We need to remember that

d

dt
=

∂

∂t
+

Ûφ
s

∂

∂φ

so

ω

m
=

Ûφ
s
−

m2(r2
0 − s2)B̂2

φ

2Ωµρs4
. (4.4.3)

Magnetic Rossby waves go westward relative to mean flow
advection speed Ûφ.

Advection speed similar to the wave speed in the Earth’s core.
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Magnetic Rossby wave frequencies

(a) (b)

The left plot is the wave speed and the right figure is the
azimuthal flow speed from a dynamo simulation with E = 10−5,
Pm = 5, Ra = 8.32Rac . VMC is phase speed of magnetic Rossby
waves, ζ = Ûφ/s is advection angular velocity.

VMC =
m2(r2

0 − s2)B2
φ

2Ωµρs4
.

Both similar, but flow dominates near equator, waves dominate at
higher latitudes. Higher latitudes where to seek waves? Large m
better, but m > 13 can’t be detected.
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Rossby waves in simulations

(a) (b)

E = 10−5, Pm = 5, Ra = 8.32Rac

Technique same as for TOs: remove time average part and plot
the z-averaged part of us .
Left: φ− t plot of < us > at s = 0.5ro (latitude 60◦). Right:
same at s = 0.766ro .

White dashed: advection speed.

Left: Black solid is wave speed + advection speed for m = 5 and
Black dashed is m = 8. Right solid is m = 6.
At higher latitudes, waves + flow correlate well. At low latitudes,
hard to distinguish.
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Comparing with data

At 40◦ S, upper black line is drift
speed from observational model
gufm1, lower black line is drift
speed with core flow removed
(Hulot et al. 2002). Difference ≈
0.2◦ per year.
The coloured dashed lines are the
expected wave speeds from our
model as a function of the
z-averaged toroidal field.

Indicates that the azimuthal field is a lot stronger than the poloidal
field of 3 mT if there is a wave component to the secular variation
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Conclusions on Magnetic Rossby waves

• Magnetic Rossby waves can be seen in dynamo simulations

• Waves are generally slow, so the wave drift will be dominated by
advection at lower latitudes.

• Best chance of separating the waves from the advection velocity
is at high latitudes, where the wave speed is significant compared
to the flow speed.

Difficulty is that waves are quite nonlinear.

• Need to analyse the data to see the wave speeds of the different
wavenumbers: dispersion relation depends on ratio of
wave/advection speed.
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4.5 Shallow water MHD model
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Stable layer in the Earth’s core?

CMB

Stable Stratified layer

Inner 
Core

Neutrally buoyant interior

Mantle

Earth’s core with stable layer

Helffrich & Kaneshima (2010)
found a layer at the top of the
liquid outer core where seismic
waves are slower than in rest of
outer core. Interpreted as a
stable layer few hundred km
thick.

Braginsky (1984, 1993) suggested light material released as the
solid inner core grows would accumulate under the core mantle
boundary: inverted ocean of the core. Even if the core is
compositionally mixed, there could be a thermally stably stratified
layer below the CMB.

Axisymmetric core oscillations visible in both secular variation and
length of day observations. 6 year period due to torsional Alfvén
oscillations in whole core, but Buffett (2015) suggested the 60 year
period could be MAC waves in the stably stratified layer.
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Waves in the tachocline?

Bright points in the Solar Corona,

viewed from N. Pole using Stereo

McIntosh et al. 2017. Bright
points in the corona show a large
scale slow wave-like motion, with
very slow wavespeed, 3 m/sec.

Slower than any waves in the corona. Suggestion is that there are
magnetic Rossby waves in the stably stratified tachocline.
These are coupled through the magnetic field to the bright points
in the corona.

These waves may be linked to dynamo action in the Sun.
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Shallow water MHD model

Perfectly conducting fluid, so the wavy boundary is a field line.

When applied to a stably stratified layer in the core, picture is
upside down, with wavy boundary being the interface between the
low density layer fluid and higher density outer core fluid. Rigid
boundary at the CMB is then above the wavy boundary.
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Magnetic field configuration

We concentrate on simplest problem, an azimuthal field symmetric
about the equator B = B0 sin θφ̂. Now have fairly complete
picture of this case.

Applications have radial fields as well, but these can transmit
energy in and out of the layer through Alfvén waves.

Also found significant differences if the azimuthal field has an
internal zero, e.g. B = B0 sin θ cos θφ̂.

Antisymmetric components of azimuthal field are expected in the
Earth and the Sun.
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Laplace Tidal theory with magnetic field

Spherical shell of radius R0, coordinates (r , θ, φ), rotating with
angular speed Ω0, with gravity −g r̂ and azimuthal magnetic field
B = B0(θ)φ̂.

The shell has a thin layer of electrically conducting fluid of depth
H, H � R0.

We look at waves and instabilities in this system, using shallow
water MHD. Longuet-Higgins (1968) gave a full description of the
waves in the B0 = 0 case.

Mathematically equivalent to a thin stably stratified layer of fluid:
gH/R2

0 → N2, where N is the buoyancy frequency.
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MHD Shallow Water Model, Gilman(2000)

∂B

∂t
+ (u · ∇)B = (B · ∇)u (4.5.1)

∂u

∂t
+ (u · ∇)u + 2Ω× u =

1

µ0ρ
(B · ∇)B− g∇H (4.5.2)

∂H

∂t
+∇ · (Hu) = 0 (4.5.3)

∇ · (HB) = 0 (4.5.4)

In these equations u and B represent the horizontal components of
the velocity and magnetic field respectively. The operator ∇ is the
horizontal gradient, ρ is the density of the fluid, µ0 is the
permeability of free space and H is the thickness of the layer.

In (4), its horizontal divergence, so no contradiction with B being
divergence free in 3D.
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Linearised equations

Waves ∼ exp i(mφ− ωt). Scale frequency with 2Ω0, so
λ = ω/2Ω0.

H = H0 + h, h scaled as η = gh/4Ω2R2
0 , change of variable:

µ = cos θ. Differential operator D = − sin θ∂/∂θ = (1− µ2)∂/∂µ.

−λuθ + µuφ + Dη −mα2bθ − 2α2µbφ = 0 (4.5.5)

λuφ − µuθ −mη + mα2bφ + 2α2µbθ = 0 (4.5.6)

λε(1− µ2)η + Duθ −muφ = 0 (4.5.7)

λbθ + muθ = 0 (4.5.8)

λbφ + muφ = 0. (4.5.9)

Two key parameters

ε =
4Ω2

0R
2
0

gH0
, α2 =

v2
A

4Ω2
0R

2
0

, where v2
A =

B2
0

µ0ρ
, λ =

ω

2Ω0
.

(4.5.10)
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Determining the Eigenvalues and Eigenvectors

The solutions for the dependent variables are expansions of
Associated Legendre Polynomials,

uθ =
∞∑

n=m

Am
n Pm

n (µ), bθ =
∞∑

n=m

Bm
n Pm

n (µ), uφ =
∞∑

n=m

Cm
n Pm

n (µ),

bφ =
∞∑

n=m

Dm
n Pm

n (µ), η =
∞∑

n=m

Em
n Pm

n (µ). (4.5.11)

Insert truncated expansions into equations → matrix eigenvalue
problem for λ. Wave types found:
Magneto-Inertial Gravity waves : Magneto-Kelvin waves

(MIG waves)

Fast magnetic Rossby waves: Slow magnetic Rossby waves
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Second oder ODES

The equation for uθ can be written

(1− µ2)
∂2uθ
∂µ2

+
2m2

(λ2 − α2m2)ε(1− µ2)−m2
µ
∂uθ
∂µ

+
{
ε(λ2 − α2m2)− m(λ+ 2mα2)

(λ2 − α2m2)
− ε(λ+ 2mα2)2

(λ2 − α2m2)
µ2

− m2

1− µ2
− 2εm(λ+ 2mα2)µ2

(λ2 − α2m2)ε(1− µ2)−m2

}
uθ = 0, (4.5.12)

and the equation for η is

(1− µ2)
∂2η

∂µ2
+ 2

(
(λ+ 2mα2)2(1− µ2)

(λ2 −m2α2)2 − (λ+ 2mα2)2µ2
− 1

)
µ
∂η

∂µ

+

{
−m(λ+ 2mα2)

(λ2 −m2α2)
− m2

1− µ2
+ ε
[
(λ2 −m2α2)− (λ+ 2mα2)2µ2

λ2 −m2α2

]
+

2m(λ+ 2mα2)(λ2 −m2α2)

(λ2 −m2α2)2 − (λ+ 2mα2)2µ2

}
η = 0. (4.5.13)
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Asymptotic simplification

These equations look complicated, but for ε and α small, there are
solutions with λ ∼ O(ε−1/2) which is large, then the equation for η

(1− µ2)
∂2η

∂µ2
+ 2

(
(λ+ 2mα2)2(1− µ2)

(λ2 −m2α2)2 − (λ+ 2mα2)2µ2
− 1

)
µ
∂η

∂µ

+

{
−m(λ+ 2mα2)

(λ2 −m2α2)
− m2

1− µ2
+ ε
[
(λ2 −m2α2)− (λ+ 2mα2)2µ2

λ2 −m2α2

]
+

2m(λ+ 2mα2)(λ2 −m2α2)

(λ2 −m2α2)2 − (λ+ 2mα2)2µ2

}
η = 0. (4.5.14)

simplifies down to

(1− µ2)
∂2η

∂µ2
− 2µ

∂η

∂µ
+

{
ελ2 − m2

1− µ2

}
η = 0. (4.5.15)

which is the standard associated Legendre equation with
well-known solutions.
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Magneto-Inertial Gravity waves

When ε, α are small, we have gravity waves, η ∼ Pm
n (µ),

ω = ±
√

n(n + 1)gH0

R0
= ±N

√
n(n + 1). (4.5.16)

If ε (rotation) increases, waves slow down and become equatorially
trapped. If α (magnetic field) increases, waves speed up, also
become equatorially trapped. Eastward and westward branches
found.
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Further asymptotic simplification

At large ε with α ∼ O(1), there are solutions with λ ∼ O(ε−1/4)
which is small.

We now consider the magnitude of the terms in the uθ equation,
and many terms are eliminated, leaving the Parabolic Cylinder
function equation, which is a form of Hermite’s equation.
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Asymptotic theory for MIG waves at large ε or α

d2uθ
dµ2

+

{
(λ2−α2m2)ε−m(λ+ 2mα2)

(λ2 − α2m2)

}
uθ−

ε(λ+ 2mα2)2

(λ2 − α2m2)
µ2ũθ = 0,

(4.5.17)
Rescale

µ =
1√
2

[
(λ2 − α2m2)

ε(λ+ 2α2m)2

]1/4

µ̂, (4.5.18)

The solutions of this equation are the Parabolic Cylinder Functions.

Dispersion Relation

1

2

[
(λ2 − α2m2)

ε(λ+ 2α2m)2

]1/2{
(λ2 − α2m2)ε− m(λ+ 2mα2)

(λ2 − α2m2)

}
= ν +

1

2
,

(4.5.19)
for ν = 0, 1, 2....

For large ε, with α ∼ O(1), λ ∼ ± (2ν+1)1/2

ε1/4 ,

and for large α, λ ∼ ±(mα + (2ν + 1)2/3

(
α

2mε

)1/3

)
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Fast Magnetic Rossby waves

At small ε we have Rossby waves as well as MIG waves. These
have frequency O(Ω0), and spherical harmonic solutions. The term
∂η/∂t drops out of the mass conservation equation.

They travel westwards, and at small α

ω = − 2Ω0m

n(n + 1)
.

At large ε they turn into equatorially trapped waves, described by
parabolic cylinder functions.

As α increases, at α = 0.5, λ = −0.5m. For α > 0.5, they become
super-Alfvénic.
At large α they become polar trapped, described by Whittaker’s
equation, with associated Laguerre function solutions.
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Fast Magnetic Rossby wave eigenfunctions
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m = 1 m = 1
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Slow Magnetic Rossby waves

These slow waves are in hydromagnetic equilibrium, so inertial
term in the equation of motion is negligible. Time-dependence
only in induction equation.

Frequency goes to zero as α goes to zero, so this branch doesn’t
exist in non-magnetic case.

When α and ε are small, eigenfunction are spherical harmonics and

ω =
mv2

a

2Ω0R2
0

(n(n + 1)− 2),

so they travel eastwards. The n = 1 mode is anomalous, and
travels very slowly westwards.

Note that magnetic Rossby waves in a full sphere travel westwards.

At large α, slow magnetic Rossby waves become polar trapped,
and travel at nearly the same speed as the polar trapped fast
magnetic Rossby waves, going east rather than west.
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Magnetic instability when m = 1
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When m = 1, the fast and slow magnetic Rossby wave branches
coalesce and give rise to unstable waves. Similar behaviour in the
unstratified full sphere (Malkus 1967).

Instability requires α > 0.5. Right hand figure shows frequencies of
n = 2, m = 1 against α for varying ε.

The unstable waves can be found asymptotically at large α.
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Antisymmetric B = B0 sin θ cos θ

This azimuthal basic state field is antisymmetric, so it is zero at
the equator

The MIG waves, Kelvin waves and fast magnetic Rossby waves
behave similarly to the symmetric case.

Surprisingly, slow magnetic Rossby waves are not found. Analytic
studies show a singularity near the equator for these modes.
Problem arises whenever the basic state field has a zero.

Need to restore magnetic diffusion to investigate the slow magnetic
Rossby wave case for this field.
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Summary on Shallow water MHD models

Combination of numerical and asymptotic methods result in a
fairly complete picture for the simple basic state field B = B0 sin θ.

Equatorial trapping and polar trapping can occur.

For strong magnetic fields, α > 0.5, m = 1 instability can occur,
though field required is too large for planetary applications.

Slow magnetic Rossby waves are more sensitive to the exact field
configuration, and more work is needed here. Some features of the
geomagnetic field propagate eastward: could be connected to
waves in a stably stratified layer?

Wave models in more realistic tachocline models could be
investigated, in the light of the slow waves detected by McIntosh
et al. 2017.
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