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Fundamentals of thermal convection II
When Ra >> Racrit thin thermal boundary layers
surrounding the isothermal interior of a convection cell
are formed. Based on this a scaling analysis can be
performed to relate flow velocity and heat flow to Ra.

Boundary layer thickness δ versus velocity u
Model problem: consider column of fluid moving at the surface
with characteristic velocity U in +x-direction. t=0 is the time when
it starts at the upwelling side, where it has a temperature T(z‘)=Ti
=∆T/2 at all depths z‘=1-z > 0.  T(z‘=0)=0, and by thermal 
conduction in the vertical direction, the column cools down to 
progressively larger depth (horizontal conduction is neglected).  
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∂T/∂t = κ ∂2T/∂z‘2 ;  T(t=0,z‘)=Ti,  T(t,z‘=0)=0,   T(t,z‘→∞)=Ti.
Introduce „similarity variable“ η=z/[2√(κt)] to transform PDE into ODE

-½ η dT/dη = d2T/dη2 ;    T(η=0)=0,     T(η→∞)=Ti .  

Solution:  T(η) = Ti erf(η)     where erf(x) is the error function.

At η=1, erf(η ) has reached 84% of its asymptotic value; this can be
taken to define the characteristic thickness of the boundary layer: 

δ = 2(κt)1/2 = 2(κx/U)1/2

Symbols:   δ – characteristic boundary layer thickness, U – characteristic velocity, z‘ – depth, Ti – temperature in core of 
convection cell, η – similarity variable
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Boundary layer scaling
At the cell edge, the surface boundary layer with thickness δ = 2(κL/U)1/2 bends around to 
form the cold vertical boundary layer of the descending flow (similarly the bottom/rising
boundary layers). The buoyancy in the vertical boundary layers drives the flow.  

W

U
D

L

Assume w(x) ~ 2W (L/2-x)/L. The associated shear stress is
σxz = η∂w/∂x ~ 2ηW/L. At the cell edge, this stress must be
supplied by the action of the gravity force Fg due to the
excess mass (or mass deficit) in the vertical boundary
layers:  Fg/(Aδ) ~ ρgα∆T.   With σxz = Fg/A ~ ρgαδ∆T and 
W≈U, L≈D, we can combine all the results:
ηU/D ~ ρgα∆T(κD/U)1/2 ⇒ [UD/κ]3/2 ~ αg∆TD3/(κν)

In non-dimensional terms: U  ~  Ra2/3 δ ~ Ra-1/3 Nu ~ Ra1/3

(Nusselt number: total / conductive heat flow,  Nu = Q / [k∆T/D],  Q ~ k∆T/δ ⇒ Nu ~ D/δ)

A more quantitative analysis provides factors of proportionality, in case of L=√2 D:

U  = 0.33 Ra2/3 δ = 3.5 Ra-1/3 Nu = 0.29 Ra1/3

Symbols:   W – characteristic vertical velocity, L – length of convection cell, Fg – gravity force of vertical boundary layer, 
σxz – shear stress, A – (unit) area of vertical boundary layer (facing in x-direction), Nu – Nusselt number, Q heat flow
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Application to mantle convection
Results from boundary layer theory are applicable at sufficiently large value of 
Ra/Rac. Numerical simulations basically confirm the scaling results even though
at high Rayleigh number the system shows chaotic time dependence and the
exponents tend to be slightly smaller.

Range estimated for mantle convection Ra ≈ 4x106 – 4x107

U ≈ 8 – 42 cm/yr (observed plate velocities 5 -10 cm/yr)

Nu ≈ 45 – 100   ⇒ Q ≈ 120 – 260 mW/m2 (observed [oceans]  90 – 100 mW/m2)

δ ≈ 31 – 66 km        (observed thickness of oceanic lithosphere 70 – 100 km)

Predictions are in the correct order of magnitude. They tend to be on the high 
side. 

Differences may be caused by complications of mantle convection: Larger aspect
ratio, viscosity variations, phase transitions, presence of continents, ...
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High Rayleigh number convection

Numerical simulations in 2D and 3D basically confirm scaling laws, with slightly smaller
values for exponents. At high Rayleigh number the flow shows chaotic time-dependence, 
with growing boundary layer instabilities: Local Rayleigh number condition for instability:

Ralocal = αg∆Tδ3/(κν) = Ra (δ/D)3 > Racrit.

When in δ ~ Ra-β the exponent β<1/3, the boundary layer must eventually become
unstable.

Smaller plumes growing in the boundary layers are swept into the main up/downwellings.
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Planform of convection in a sphere

Radial velocity (red = rising, blue = sinking) near the outer boundary in 
a spherical convection model (Bercovici et al., JGR, 1989)

Numerical simulations of isoviscous convection in a spherical shell indicate that the hot rising
flow takes the form of isolated plumes, whereas the cold sinking flow occurs in an 
interconnected network of sheets (not unlike subducting slabs). 
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Influence of phase transitions
Solid-solid phase transitions at 410, 520 and 660 km depth, Olivine (α) ⇒ Wads-
leyite (β) ⇒ Ringwoodite (γ) ⇒ Perovskite + Magnesiowüstite. Density change ∆ρ ≈
4 – 9%, Clapeyron slope γ = dp/dT ≈ +3 MPa/K (410 km), - 2.8 MPa/K (660 km).

Ring

Phase transitions influence convection by:
(1) Release of latent heat (QL = γT∆ρ/ρ2),   

neglected in the Boussinesq approx.
(2) Deflection of phase boundary in vertical

boundary layers: δz = -γδT/(ρg)

ρ

ρ+∆ρ

Example: Deflection of 
phase boundary with γ<0 in 
hot rising flow. Elevated
region of high-density phase
has negative buoyancy that
opposes convection

Phase boundary with γ>0 helps to drive convection, for γ<0 it retards convection

Symbols:   γ=dp/dT – Clapeyron slope, QL – specific latent heat, ∆ρ – density contrast between phases, δT –
temperature in boundary layer, δz – phase boundary deflection
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Influence of phase transitions II
Characteristic non-dimensional parameter
obtained from balancing buoyancy force from
phase boundary deflection, -∆ρgδz=γ∆ρδT/ρ, 
and that from thermal expansion, ρgαδTD:

gD
P

αρ
ργ

2
∆

=

For P < -1, the opposing buoyancy of phase boundary
deflection dominates over driving thermal buoyancy. The
driving buoyancy is distributed over the entire vertical boundary
layer, whereas the opposing buoyancy is localized. Hence
single-layer convection breaks down in favor of two-layer
convection at values -1 < P < 0. The critical value of P should
depend on Ra (because b.-l.-thickness varies with Ra). 
Numerical results suggest

Pcrit ≈ -4.4 Ra-1/5

P=+0.3 P=0.0             P=-0.3

P=-0.4             P=-0.6

Symbols:   γ=dp/dT – Clapeyron slope, QL – specific latent heat, ∆ρ – density contrast between phases, δT –
temperature in boundary layer, δz – phase boundary deflection
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Phase transitions: Application to Earth
For the ringwoodite ⇒ perovskite+magnesiowüstite transition in the Earth P ≈ -0.1.

For Ra = 4x106 – 4x107 ,  Pcrit = -0.13 to -0.21.    Hence the phase boundary is
(marginally) unable to enforce layered convection, but has a sufficiently strong
effect to generate complexity (such as retarded penetration of phase boundary).

Numercial simulation of a cold sinking
lithospheric slab, interacting with a phase
boundary with negative Clapeyron slope. 
Plate motion at 5 cm/yr and subduction is
enforced by surface velocity conditions. 
There is retrograde motion of the point of 
descent (trench rollback) at -2 cm/yr. The
slab is temporarily stopped at the phase
boundary at 660 km depth because of its
downward deflection at lower than normal 
temperature. 

Symbols:   γ=dp/dT – Clapeyron slope, QL – specific latent heat, ∆ρ – density contrast between phases, δT –
temperature in boundary layer, δz – phase boundary deflection
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Phase transition: application to Mars
In Mars g ≈ 3.7 ms-2 ⇒ pressure increases less rapidly with depth. Not clear if
ringwoodite ⇒ perovskite+magnesiowüstite transition occurs above CMB. If it does, 
it is only some tens to 200 km above the CMB, i.e. in or close above the hot 
thermal boundary layer. P ≈ -0.4 (larger than in Earth because of low g). 

3D numercial simulation of convection in a sphere with phase
boundary with negatice P at short distance above the core. 
Starting from an initial condition with many rising plumes, the
system evolves towards a convection pattern with one single
plume (⇒ Tharsis volcanism). The plumes are not stationary, 
but they migrate and they merge. Without the phase
boundary, new plumes are formed by boundary layer
instabilities. With the phase boundary, boundary layer
instabilities are prevented from growth by the negative 
feedback of the phase boundary deflection.

Phase boundary

Hot boundary layer
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