

total inertial force

$$F_i = \rho \quad uu_x \, dx \, dy \, dz \quad \sim \rho \, U^2 \, hw \quad \leftarrow \text{width}$$
 $F_i \sim \rho \, U^2 \, hR$
 $r \sim \rho \, qLwt^{\alpha-2}$
 $\rho \, qLwt^{\alpha-2}$
 $\rho \, QRt^{\alpha-2}$
 $F_i = \frac{\partial P}{\partial x} \, dx \, dy \, dz$
 $r \sim \rho \, g \, h^2 R$
 $r - \rho \, g \quad \frac{\partial h}{\partial x} \, dx \, dy \, dz$
 $r \sim \rho \, g \, h^2 W$
 $r \sim (\rho g \, q^2 \, w / \, L^2) t^2$
high Reynolds number, buoyancy-inertia balance $F_i \sim F_g$
 $L \sim (g \, q)^{1/3} t^{(\alpha+2)/3}$
 $Froude number constant$
 $Formulae must be dimensionally correct]$
with constants only really determinable by numerical solution of equations or experiment, with good agreement of functional forms.

simplest analysis of approximate box model 6.3 α = 0; constant V $\dot{x}_N = Fr(gh)^{1/2}$ |h| $x_N h = A_0$ $x_N = \binom{3}{2} Fr^{2/3} (g A_0)^{1/3} t^{2/3}$ (no entrainment) [Shallow water theory also possible, B,H² & L, 1993] 2. Low Reynolds number $Re = Vh' v \ll 1$ currents are very different. Inertia is no longer relevant. viscous force $F_{\rm v} = \mu^{-2} u dx dy dz$ $F_v \sim \mu U R^2 / h$ ~ u*ULw/ h* $\sim \mu q^{-1} L^3 w t^{-\alpha-1} \sim \mu Q^{-1} R^5 t^{-\alpha-1}$ buoyancy - viscous balance $F_v \sim F_g$ $L \sim \left(g \ q^{3} / v\right)^{1/5} t^{(3\alpha+1)/5} \qquad R \sim \left(g \ Q^{3} / v\right)^{1/8} t^{(3\alpha+1)/8}$

Under what conditions are these balances valid? 6.4 $F_i/F_v \sim (q^4 g^2 v^3)^{1/5} t^{(4\alpha-7)/5}$ ~ $(Q g v)^{1/2} t^{(\alpha - 3)/2}$ which allows for the definition of a transition time $t_1 = (q^4 / g^2 v^3)^{1/(7-4\alpha)}$ $t_1 = (Q' g v) t^{1/(3-\alpha)}$ These expressions have a singularity at $\alpha = \alpha_c = 7/4$ $\alpha = \alpha_c = 3$ **For** $\alpha < \alpha_c$ $t << t_1$ inertial current $t >> t_1$ viscous $\alpha = \alpha_c$ $J = v^3 g^2 / q^4$, vg / Q << 1 inertial t >>1 viscous t $\alpha > \alpha_c$ $t << t_1$ viscous current $t >> t_1$ inertial < _ inertial then viscous > viscous then inertial

3. *Re* << 1 6.5 q **q** 0 $\mathbf{0} = -\mathbf{p} + \mu^{-2}\mathbf{q}$ (linear equation, but boundary conditions may not be) In the flow of thin films - lava domes, lubrication bearings - analytical simplifications can be made which take into account that $\partial_x << \partial_z$ and **u** [u(z, x), 0, 0]. As an example, consider a thin dimensional current propagating on a rigid horizontal boundary - lava flow, honey on toast, oil on ground etc. $p = p_0$ on unknown surface z = h(x, t) $h(x,t) \rho$ $p = p_0 + \rho g(h - z)$ hydrostatic (H², 1982) $-\frac{\partial p}{\partial x} = -\rho g \frac{\partial h}{\partial x}$

Current driven by pressure gradient as a result of slope of free surface. 6.6 [If density of outer fluid is $\rho - \rho$, g replaces g.] 0 because thin (x - momentum) $0 = -\rho g \frac{\partial h}{\partial x}(x, t) + \mu u_{xx} + \mu u_{zz}$ (boundary conditions) u = 0 (z = 0) $\frac{\partial u}{\partial z} = 0$ (z = h) h(x, t) u u $u(x, z, t) = -\frac{g}{2} \frac{\partial h}{\partial x} z(2h - z)$ $Q = \int_{0}^{h} u dz = -\frac{1}{3} \frac{g}{v} h^{3} \frac{\partial h}{\partial x}$ ($L^{2}T^{-1}$) local continuity $Q = \int_{0}^{h} u dz = -\frac{1}{3} \frac{g}{v} h^{3} \frac{\partial h}{\partial x}$ ($L^{2}T^{-1}$)

3

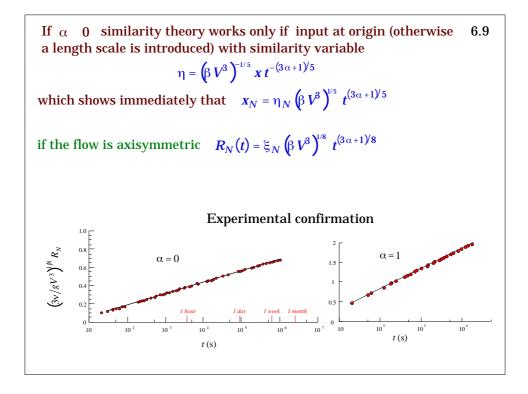
i.e. $\frac{\partial h}{\partial t} + \frac{\partial Q}{\partial x} = 0$ and hence $\frac{\partial h}{\partial t} - \frac{1}{3} \frac{g}{\sqrt{\partial x}} \frac{\partial}{\partial t} h^3 \frac{\partial h}{\partial x} = 0$ a nonlinear diffusion equation global continuity $x_N(t) h(x, t) dx = \text{Volume} = At^\alpha$ say Solution either by numerical integration for given initial conditions (difficult) or by trying for a solution in one similarity variable [c.f. $x/(\kappa t)^2$] to which all solutions tend. H² method to determine similarity solutions $\beta = \frac{1}{3} \frac{g}{v} = \frac{h}{t} \frac{\beta}{x^2} = \frac{h^3}{x^2} - \frac{h^3}{x^2/\beta t}$ same size as, and definitely

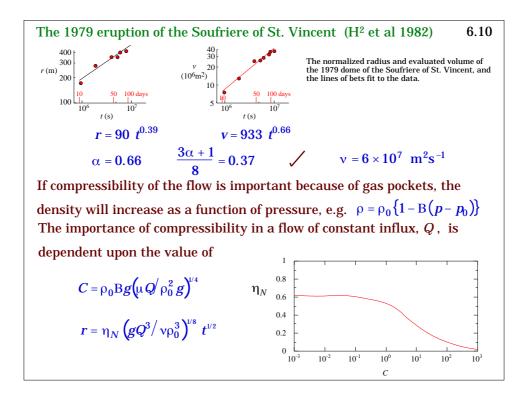
same dimensions as

$$hx \sim V \quad (\text{assume constant;} = 0) \quad h \sim V/x \qquad 6.8$$

$$\frac{V^3}{x^3} \sim \frac{x^2}{\beta t} \quad \text{or} \quad \frac{x^5}{\beta V^3 t} \sim 1 \qquad (\beta V^3)^{-1/5} xt^{-1/5} \sim 1$$
suggests $\eta = (\beta V^3)^{-1/5} xt^{-1/5}$ is a suitable similarity variable
and also $h \sim \frac{V}{x} \sim \frac{V^2}{\beta}^{-1/5} t^{-1/5}$
Thus $h(x,t) = \eta_N^{2/3} (V^2/\beta)^{1/5} t^{-1/5} \phi(\eta/\eta_N - y)$
where η_N is the value of η at the nose
 $\partial_t = -\frac{1}{5} \frac{\eta}{t} d_\eta \qquad \partial_x = \frac{\eta}{x} d_\eta$
with $(\phi^3 \phi) + \frac{1}{5} y\phi + \frac{1}{5} \phi = 0 \qquad = \frac{d}{dy}$
 $\eta_N = -\frac{1}{0} \phi dy^{-\frac{3/5}{15}}$
1 b.c. $\phi = 0 \qquad (y=1)$ suffices!!
exact solution by integration $\phi(y) = (\frac{3}{10})^{1/3} (1 - y^2)^{1/3} \qquad \eta_N = 1.411$
(in terms of functions)

4





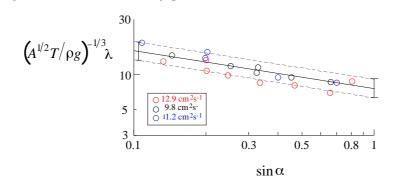
Is a two-dimensional flow of a thin film down a slope possible? 6.11 (H², 1982) Assume it is (x - momentum) $0 = -\frac{1}{\rho} p_x + g \sin\theta + \nu u_{zz}$ (z - momentum) $0 = -\frac{1}{\rho} p_z - g \cos\theta$ $p(x, z, t) = -\rho gz \cos\theta + f(x, t)$ with f(x, t) such that $p = p_0$ on z = h(x, t), i.e. $p = p_0 + \rho g(h - z) \cos\theta$ $\nu u_{zz} = gh_x c_0 - g \sin\theta$ u(x, 0) = 0 $u_z(x, h) = 0$ unless α 0, because $h_x <<1$, $h_x \cos\theta <<\sin\theta$ $u = \frac{g \sin\theta}{2\nu} z(2h - z)$ with $Q = \frac{1}{3} \frac{g}{\nu} h^3 \sin\theta$ $h_t + Q_x = 0$ $h_t + \frac{g \sin\theta}{\nu} h^2 h_x = 0$ A first order nonlinear equation which shows that h is constant along characteristics given by $\frac{dx}{dt} = \frac{g \sin\theta}{\nu} h^2$

The solution is thus given by $h(x, t) = F x - \frac{gs_{\alpha}}{v} h^{2} t$ where h(x, 0) = F(x)Larger values of h travel faster $(-h^{2})$ with initial blob spreading so that back thins and front steepens As t the solution must behave like $h = (v/gs_{\alpha})^{1/2} x^{1/2} t^{1/2}$ independent of F. This is also the similarity solution [Prove this!] Considered along with $\int_{0}^{x_{N}(t)} h(x, t) dx = A$, we obtain $x_{N} = (\frac{g}{4} A^{2} gs_{\alpha}/v)^{1/3} t^{1/3}$ $\int_{0}^{-y/2} x_{N} \int_{0}^{0} \int_{0}^{0}$ Incorporating the effects of surface tension (coefficient T) indicates that after a distance $x_c = A^{1/2}$ an instability occurs with a wavelength

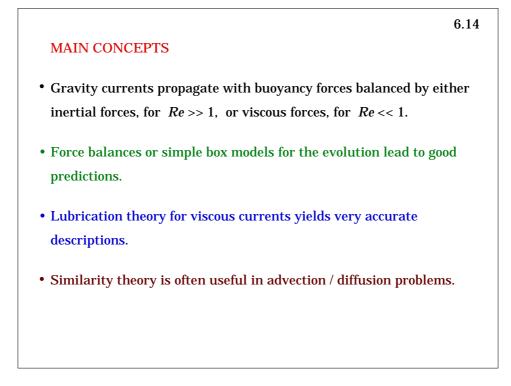
6.13

$$\lambda = 7.5 \left(A^{1/2} T / \rho g s_{\alpha} \right)^{1/3}$$

independent of (which only gives timescale) !



The wavelength of the instability at the front, normalized with respect to $(A^{1/2} T \rho g)^{1/3}$, as a function of the slope angle α , at three different viscosities.



Lecture 6. Gravity Currents and Lava Domes

Bonnecaze, R.T., Huppert, H.E. and Lister, J.R., 1993 Particle-driven gravity currents, J. Fluid Mech., 250, 339-369.

6.15

- Huppert, H.E., 1982 The flow and instability of viscous gravity currents down a slope, *Nature*, **300**, 427-429 with front cover photograph.
- Huppert, H.E., 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface, *J. Fluid Mech.*, **121**, 43-58.

Huppert, H.E., Shepherd, J.B., Sigurdsson, H. and Sparks, R.S.J., 1982 On lava dome growth, with applications to the 1979 lava extrusion of Soufriere, St. Vincent, J. Volcanol. and Geotherm. Res., 14, 199-222.