## 5. MELTING

1. Preliminaries
a) If heat is transferred in a solid or a stationary fluid

b) If a different amount of heat flows into a region than emerges from it, the region must change its temperature


$$
\begin{aligned}
& \rho c_{p} \delta T \delta x=-\delta Q \delta t \\
& \text { specific heat / unit mass } \\
& \rho c_{p} \frac{\partial T}{\partial t}=-\frac{\partial Q}{\partial x}=\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)=k \frac{\partial^{2} T}{\partial x^{2}} \\
& \text { if } k \text { is a constant }
\end{aligned}
$$

Alternatively,

$$
\mathrm{k}=\rho \mathrm{C}_{\mathrm{p}} \kappa \longleftarrow \text { thermal diffusivity }\left(\mathrm{cm}^{2} \mathrm{~s}^{-1}\right) \text { (c.f. viscosity) }
$$

Then
$T_{t}=\kappa T_{x x}$
c) In more than one dimension
 $\mathrm{T}_{\mathrm{t}}=\kappa \nabla^{2} \mathrm{~T}$
Temperature diffuses through the solid
d) Differences in heat flux at an interface can be taken up by a phase change

Iatent heat per unit mass

2. Consider 2 semi-infinite bodies of identical physical properties 5.3 in contact at initial temperatures $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$. If heat transfer takes place solely by conduction, and there is NO melting, the governing equations are


$$
\left.\begin{array}{rlrl}
\mathrm{T}_{\mathrm{t}} & =\kappa \mathrm{T}_{\mathrm{xx}} & (\mathrm{x} \gtrless 0) \\
\mathrm{T} & =\mathrm{T}_{1} & & (\mathrm{x}<0)  \tag{II}\\
& =\mathrm{T}_{2} & (\mathrm{x}>0)
\end{array}\right\}\left[\begin{array}{ll}
\mathrm{t}=0]
\end{array}\right.
$$

T and all derivatives continuous at $\mathrm{x}=0, \mathrm{t}>0$ ।
Because there is no length scale the solution must be in terms of the similarity variable

$$
\eta=\frac{x}{2 \sqrt{\kappa t}}
$$

The differential equation then becomes the ordinary differential equation $\quad \frac{d^{2} T}{d \eta^{2}}-\eta \frac{d T}{d \eta}=0$

$$
\begin{aligned}
& \text { with solution } T(x, t)=\underbrace{\frac{1}{2}\left(T_{1}+T_{2}\right)}+\frac{1}{2}\left(T_{1}-T_{2}\right) \operatorname{erf}\left(\eta=\frac{x}{2 \sqrt{\kappa t}}\right) \\
& T(0, t>0)=\overline{T_{0}}
\end{aligned} \text { where } \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

3. Consider now region 1 to be fluid and region 2 to be solid.

If $\bar{T}_{0}$ exceeds the melting temperature of the solid, or is less than the solidification temperature of the liquid, a phase change will occur and the boundary at $x=s$ between fluid and solid will migrate. The equations are I and II plus

$$
T=T_{*}, \quad L_{V} \dot{S}=k T_{x}(s+)-k T_{x}(s-) \quad I V
$$

Again, because there is no external length scale, there is a similarity solution in terms of

$$
\begin{aligned}
& \begin{array}{r}
\eta=\frac{x}{2(\kappa t)^{\frac{1}{2}}} \quad \text { and } \quad s(t)=2 \lambda(\kappa t)^{\frac{1}{2}} \\
\mathrm{~T}(\mathrm{x}, \mathrm{t})
\end{array}=\mathrm{T}_{1}-\left(\mathrm{T}_{1}-\mathrm{T}_{*}\right) \frac{1+\operatorname{erf\eta } \eta}{1+\operatorname{erf} \lambda} \quad(\eta<\lambda, \mathrm{x}<\mathrm{s}) \\
& =\mathrm{T}_{2}-\left(\mathrm{T}_{2}-\mathrm{T}_{*}\right) \frac{1-\operatorname{erf\eta }}{1-\operatorname{erf} \lambda} \quad(\eta>\lambda, \mathrm{x}>\mathrm{s}) \\
& \text { with } \frac{1}{1+\operatorname{erf} \lambda}-\left(\frac{\mathrm{T}_{*}-\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{*}}\right) \frac{1}{1-\operatorname{erf} \lambda}=\frac{\lambda \mathrm{L}_{V} \pi^{\frac{1}{2}}}{\mathrm{c}\left(\mathrm{~T}_{1}-\mathrm{T}_{*}\right)} \\
& \left(\mathrm{k}=\mathrm{ck}_{\mathrm{c}}\right)
\end{aligned}
$$

4. There are many extensions possible that consider only conductive transfers (see, for example, books by Carslaw and J aeger, Crank and Hill).

Consideration of dissolving would be very similar, except that composition C substitutes for temperature T and diffusion coefficient in solid is so small that it can be set to zero. Could also consider two-component melting and dissolving, which is generally similar to two-component solidification (with sign of boundary growth rate changed).

Convective motions, however, can make considerable alterations because thermal transfers can be so much larger.
5. Consider the following basic problem

equations
$T_{t}=\kappa \nabla^{2} T \quad(z>a) \quad T(x, y, a)=T_{m} \quad T \rightarrow T_{\infty}(z \rightarrow \infty)$
long-term solution if $I_{x}, I_{y} \gg I_{z}=k / \dot{a}$ is
$\mathrm{T}=\mathrm{T}_{\infty}+\left(\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\infty}\right) \exp \left[-\frac{\dot{\mathrm{a}}(\mathrm{z}-\mathrm{a})}{\kappa}\right]$
with $\mathrm{H}=\left.\mathrm{k} T_{z}\right|_{z=s}+\mathrm{L}_{\mathrm{v}}$ à
$\therefore \quad \dot{a}=\frac{H}{\left[L_{V}+\rho c\left(T_{m}-T_{\infty}\right)\right]}=\frac{\text { heat input }}{\text { heat to raise temp and then melt }}$


Experimental and theoretical temperatures and melt thicknesses as functions of time: (a) and (b) wax roof; (c) and (d) ice roof experiments.


The mean temperatures in the basaltic $\left(T_{b}\right)$ and granitic $\left(T_{g}\right)$ layers and the thickness of the granite layer $a$ as functions of
The mean temperatures in the basaltic $\left(T_{b}\right)$ and granitic $\left(T_{g}\right)$ layers and the thickness of the granite layer $a$ as functions of
time: solid line - perfect fluid case; dashed line - allowing for crystallization in both layers. The basalt cannot be considered time: solid line - perfect
a fluid below $1091{ }^{\circ} \mathrm{C}$.
8. Consider the initial value problem of hot fluid suddenly introduced to flow turbulently over a cold solid ground. Does melting of solid or solidification of fluid occur first? Constant turbulent flux is to be compared with large (initially infinitely large) conductive flux, and so solidification must occur first (unless solidification temperature of fluid is less than initial temperature of ground).


Consider equal melting and freezing temperatures $\mathrm{T}_{*}$


$$
\begin{gathered}
T_{t}=\kappa T_{x x} \quad[x>a(t)] \\
T=T_{*} \quad L_{v} \dot{a}=H+k T_{x} \quad[x=a(t)] \\
T \rightarrow T_{0} \quad(x \rightarrow \infty) \\
T=T_{0} \quad(t=0, x>0)
\end{gathered}
$$

## Non-dimensionalise by introducing

$$
\begin{aligned}
\mathrm{T}= & \mathrm{T}_{0}+\left(\mathrm{T}_{*}-\mathrm{T}_{0}\right) \theta \\
\mathrm{a}= & \mathrm{k}\left(\mathrm{~T}_{*}-\mathrm{T}_{0}\right) \frac{\eta}{\mathrm{H}} \\
& \mathrm{t}=\mathrm{k}\left(\mathrm{~T}_{*}-\mathrm{T}_{0}\right) \frac{\xi}{\mathrm{H}} \\
& \text { space scale }
\end{aligned}
$$

$$
\theta_{\tau}=\frac{1}{4} \theta_{\xi \xi} \quad[\xi>\eta(\tau)]
$$

$$
\theta=1 \quad 4 \mathrm{~S} \dot{\eta}=1+\theta_{\xi} \quad[\xi=\eta(\tau)]
$$

$$
\theta \rightarrow 0 \quad(\xi \rightarrow \infty)
$$

$$
\theta=0 \quad(\tau=0, \xi>0)
$$

where the Stefan number $S=\frac{L}{c\left(T_{*}-T_{0}\right)}$,
the ratio of the latent heat of melting to the heat needed to raise the solid from its initial temperature to its melting temperature. Nonlinear problem, with linearisation possible by writing $\xi=0$ rather than $\xi=\eta$ for boundary condition
solution

$$
\theta(\xi, \tau)=\operatorname{erfc}\left(\xi / \tau^{\frac{1}{2}}\right) \quad \eta(\tau)=\left[\frac{1}{4} \tau-\left(\frac{\tau}{\pi}\right)^{\frac{1}{2}}\right] S^{-1}
$$

i.e. $\eta$ is initially negative, attains a minimum and thereafter increases steadily. The solution then very rapidly attains the steady state derived in 5.6.

9. Consider an inviscid gravity current of thickness $h$,
propagating at velocity $\vee$ due to density difference $\Delta \rho$ :


Important parameters
$\mathrm{V}, \mathrm{h}, \frac{\Delta \rho \mathrm{g}}{\rho}=\mathrm{g}^{\prime} \quad$ (reduced gravity)

$$
\mathrm{V} \equiv \mathrm{LT}^{-1}, \quad \mathrm{~h} \equiv \mathrm{~L}, \quad \mathrm{~g}^{\prime} \equiv \mathrm{L} \mathrm{~T}^{-2}
$$

There is one non-dimensional parameter, the Froude number
$\mathrm{Fr}=\mathrm{V} /\left(\mathrm{g}^{\prime} \mathrm{h}\right)^{\frac{1}{2}}=\frac{\text { velocity of current }}{\text { velocity of long waves on current }}$ (c.f. Mach number)

For $\operatorname{Re}>c .500 \quad \frac{1}{2} \rho V^{2}=\Delta \rho g h$

$$
\text { i.e. } \quad \operatorname{Fr}=-\sqrt{2}
$$

In terms of $\mathrm{Q}=\mathrm{Vh}$

$$
h=\frac{1}{2}\left(Q^{2} / g^{\prime}\right)^{\frac{1}{2}}
$$

(N ote that low Reynolds number currents are different.)
10. Consider now a hot turbulent gravity current flowing over an erodible bed and under a semi-infinite cool ocean (as occurred in the Archaean)

$$
\mathrm{H}^{2} \text { et al 1984; } \mathrm{H}^{2} 1986
$$



A sketch of a hot, turbulent gravity current propagating over an erodible bed and forming a thin crust at the top of the current.

Assume for simplicity that: The melting temperature of the ground is identical to the freezing temperature of the lava; and that the far-field temperatures in the ground and the water are identical. Conservation of heat then states

| $\rho c_{p} h \dot{T}_{g c}=-2 H-\rho c_{p} \dot{s}\left(T_{g c}-T_{m}\right)$ |  |  |
| :--- | :--- | :--- |
| heat required to |  |  |
| capacity of current | heat lost from | bring molten rock to |
| current | mean temperature |  |

In turbulent flows $H=h_{T}\left(T_{g c}-T_{m}\right)$
with $\mathrm{h}_{\mathrm{T}}$ here assumed constant
The solution is obtained by transforming $t$ derivatives to $x$ derivatives by $\frac{\mathrm{d}}{\mathrm{dt}}=\mathrm{V} \frac{\mathrm{d}}{\mathrm{dx}}$ and introducing the non-dimensional quantities

$$
\theta=\frac{T_{g c}-T_{m}}{T_{g c}(0)-T_{m}} \equiv \frac{T_{g c}-T_{m}}{\Delta} \quad \xi=\frac{2 h_{T} x}{\rho c Q}
$$

$$
\begin{align*}
& \theta_{\xi}=-\theta-\beta \theta^{2} \quad \theta(0)=1 \quad \begin{array}{c}
\theta=\left[(\beta+1) \mathrm{e}^{\xi}-\beta\right] \\
\beta
\end{array}=\frac{\Delta}{2\left(\mathrm{~T}_{\mathrm{m}}-\mathrm{T}_{\infty}+\mathrm{Lc}^{-1}\right)}=\frac{1}{\text { thermal energy of input }} \\
& \text { thermal energy to raise ground to } \mathrm{T}_{\mathrm{m}} \\
& \text { and melt it }
\end{align*}
$$

The non-dimensional temperature as a function of the non-dimensional distance for three values of b for a hot, turbulent gravity current propagating over an erodible bed,
The relative contamination

$$
\begin{aligned}
c & =\int_{0}^{x} \dot{s} d x / Q \\
& =\ln \left[(\beta+1) e^{\xi}-\beta\right]-\xi \\
& \rightarrow \ln (\beta+1) \text { as } \xi \rightarrow \infty
\end{aligned}
$$


Main ideas of lecture 5 ..... 5.17
1 Preliminary equations
2 Heat transfer without melting
3-5 Melting
6-7 Melting the roof of a chamber
8 The initiation of melting
9 Inviscid gravity currents
10 Hot fluids over erodible cold surfaces : ancient lava flows

## Lecture 5. Melting

Carslaw, H.S. and Jaeger, J.C., 1959 Conduction of Heat in Solids, Cambridge University Press.
Crank, J., 1984 Free- and Moving-Boundary Problems, Clarendon Press.
Hill, J.M., 1987 One-dimensional Stefan Problems: An Introduction, Longman.
Huppert, H.E., 1986 The intrusion of fluid mechanics into geology, J. Fluid Mech., 173, 557-594
Huppert, H.E., 1989 Phase changes following the initiation of a hot, turbulent flow over a cold, solid surface, J. Fluid Mech., 198, 293-319.

Huppert, H.E. and Sparks, R.S.J., 1988 Melting the roof of a magma chamber containing a hot, turbulently convecting fluid, J. Fluid Mech., 188, 107-131.
Huppert, H.E., Sparks, R.S.J., Turner, J.S. and Arndt, N.T., 1984 Emplacement and cooling of komatiite lavas, Nature, 309, 19-22 with front cover photograph.

