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3. CONVECTION

Natural convection is the flow of fluid driven by density gradients owing to 
gradients in temperature, composition...

STATIC STABILITY
There are possible steady states with

Important physical parameters

      u ≡ 0 = 0 1+ z( )

    

g

Dimensions:       LT−2 L2T−1 L2T −1 L−1

Stable Statically unstable
Dynamically unstable?

< 0 > 0

3.1

1. Introduction

3.2

Potential energy released

Consider a fluid parcel of characteristic length  l  elevated through height  h  

in time    with characteristic velocity

    

i.e. if the Rayleigh number
    
Ra = gl 4

1>~

    

E ~ ∆ l 3( ) gh

~ 0 h l 3 gh

~ 0 gh 2 l 3

Energy dissipated by viscosity D ~
U

l
l 2 . h ~

h2

~ h2

l
l

Instability if     E D>~ ⇒ 0 gh2 >~l 3 h2

l

= 0 1+ z( )
l

h

2. Dimensional analysis

Parcel runs out of buoyancy by diffusion in time ~ l2

U ~ h
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3.3

GOVERNING EQUATIONS STEADY SOLUTIONS

      

g
Du

0 Dt
= −∇p + + ∇2u

D

Dt
≡

t
+ u ⋅ ∇ g = 0,0,− g( )

∇ ⋅ u = 0

= 0 1 − T − T0( )[ ]
DT

Dt
= ∇2T

(momentum)

(continuity)

(diffusion)

u = 0

T = T0 + ∆T 1 − z

h

 
  

 
  

= 0 1+ z( )

      where    = ∆T

h

      ∇p = 0 1+ z( ) g

    T0

T0 + ∆T

z = h

z = 0

T 

3. Rayleigh-Bénard convection

is the Prandtl number

is the Rayleigh number.

      

u = u,v, w( )
T = T +

p = p + ′ p 

    

t − ∇2( ) P−1
t − ∇2( )∇2W = Ra ∇h

2W

where     P = = diffusivity of momentum

diffusivity of heat

    
and    Ra = g ∆T h3

= gh4

Substitute into governing equations, linearize in small quantities  u, θ,   

and non-dimensionalize lengths w.r.t.  h,  time w.r.t.              to obtain

3.44. Linearized perturbation equations

′ p 

    h
2
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5. Normal modes

BOUNDARY CONDITIONS

    

Then      D2 − k2 −( ) D2 − k2 − P−1( ) D2 − k2( )W + k2 RaW = 0

horizontal wave 
numbers

growth 
rate

    w x, y, z, t( ) = W z( ) ei lx+ my( )+ t

x

y
z

z = 1

z = 0

3 b.c.s

3 b.c.s

i)  zero normal velocity:  W  = 0

ii) (a)  zero tangential velocity:  DW  = 0        

                      (no slip)

    (b)  zero tangential stress:  D  W  = 0

iii) (a)  fixed temperature:  T  = given

     (b)  fixed heat flux:        = given

2

    ux + vy + wz( )= 0

    xz = uz + wx = 0( )

    D
2 − k2 − P−1( ) D2 − k2( )W = 0

  

T

z     D
2 − k2 − P−1( ) D2 − k2( )DW = 0

0

3.5

3.6Example 

Stress-free, perfectly conducting boundaries   B.C.s (i)  (iib)  (iiia)
Marginal stability (neutral curve) determined by

First unstable mode has  n = 1:

Neutral curve: Ra =
k2 + 2( )3

k2

Rac = 27 4

4
≈ 658 kc =

2
≈ 2.22

  Ra

Rac

kc

k

UNSTABLE

STABLE

Neutral curve

D2 − k2( )3
+ Ra k2[ ]W = 0

W = D2W = D2 − k2( )2
W = 0 z = 0,1( )

    with n2 2 + k2( )3 = Ra k2 (Rayleigh 1916)nSolution: W = sin z
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Other results

With fixed-heat-flux boundaries:

two stress-free boundaries:  Rac  = 120

two rigid boundaries:  Rac  = 720

one free, one rigid, perfect conductor:     Rac ≈ 1101 at kc ≈ 2.68

two rigid, perfect conductors:     Rac ≈ 1708 at kc ≈ 3.12

Neutral curve

    Ra

Rac

kc = 0
k

3.7

3.86. Heat flux

An important quantity in convective 

flows is the mean (horizontally 

averaged) heat flux  FH .

If the flow is steady then

If the flow is unsteady then it is usual to average the Nusselt number 

temporally as well.         N.B.  Nu = 1  with no flow          Nu > 1  with flow

    
Nusselt number      Nu = total heat flux

conducted heat flux

eddy flux

mean gradient flux

where    is a 
horizontal average

  
Nu = WT − kT z

k ∆T h

    T0

T0 + ∆T

z = h

z = 0

This is often measured relative to the conductive heat flux that would occur 

in the absence of convection in a ratio called the
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3.9

-0.5

0

0.5
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− 0

∆

16.0

3.81

1.48

Linear (conductive)

Observed mean temperature profiles in a convecting fluid layer (JST 1979).  
Note the reversals of gradient at the larger values of                       , which 
are marked on the curves.

= Ra Rac

7. Convection at high Rayleigh numbers

3.10

Hypothesis: small-scale plumes detatch from laminar boundary layer only 

'see' a statistically uniform, turbulent interior       FH   is independent of  h⇒

    
Heat flux FH = k ∆T

h
Nu

⇒ Nu = f Ra, P( ) ∝ Ra1/ 3 = g ∆T h3 

 
 

 

 
 

1/ 3

FH = c P( ) gk2 

 
 

 

 
 

1/3

∆T4 /3

Turbulent 
interior

laminar boundary layer

  T 

This is the so-called famous "four-thirds law" for turbulent heat fluxes.

h
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This picture was formalised by Howard (1966).

The boundary-layer thickness grows by thermal diffusion with

until at time  tc   it is unstable and breaks down, reducing  δ  to zero.

    

T = T0 + ∆T

2
1+ erfc

z

2 t

 
  

 
  

= t

Define tc by
g ∆T c

3

2
= Rc

⇒ c = 2

g ∆T

 

 
 

 

 
 

1/3

Rac
1/3 ⇒ c

h
= 2Rac

Ra

 
  

 
  

1/3

Conductive, thermal 
boundary layer

    
T = T0 + ∆T

2
z = t( )

z = 0
T = T0 + ∆T

3.11

3.12The time-averaged heat flux

e.g. if  Rac  = 1100  then  Nu  = 0.077 Ra1/3

FH = − k
T

z z=0

= k ∆T

2tc

dt

t0

tc

∫ = k ∆T

c   
Ra

2Rac

 
 

 
 

1/3

    
⇒ Nu = FH h

k ∆T
= h

c

=
    

H2 (unpublished)

1 10 505
1

10

2

6

8

4

Nu

R Rc ≡ R 658

Nu = 1.95 R Rc( )1 3 = 0.224 R1 3
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3.13Denton & Wood (1979)
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Rac = 1708
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Ra

C
a

=
N

u
R

a1
3

3.14Recent experiments (Castaing et al.,1989) have  

found  Nu    Raβ   with∝

±β = 0.282    0.006

Soft turbulence Hard turbulenceNu

Ra

103

102

10
107 108 109 1010 1011 1012
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8. Double-diffusive convection occurs whenever
  i)   two or more components of
  ii)  different molecular diffusivities
  iii) contribute in an opposing sense to the vertical
       density gradient
It is most interesting when
  iv)  the mean density field is statically stable

Double-Diffusive Convection

Examples

i)   Components are   heat (T) and salt (S)

                                    salt (T) and sugar (S)

   heat (T) and helium (S)

ii)                                for salt/heat                    for sugar/salt

iii)
= 0 1− T + S( )

    

1

0 z
= − T

z
+ S

z

3.15

= 10−2
  = 1 3  = S T

9. Salt Fingers

Consider a blob of fluid displaced downwards.

It is hotter and saltier than its new 

surroundings.

It loses heat quickly by thermal diffusion

It loses salt slowly by molecular diffusion

Having lost its thermal buoyancy, it is 

heavier than its surroundings and sinks.

HOT

COLD

SALTY

FRESH

  T S

HEAT

SALT

3.16
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Consider a blob of fluid displaced upwards.

10. Oscillatory "Diffusive" Convection

Having lost its thermal buoyancy it sinks and 

carries on falling a little past its original position.

COLD

HOT

FRESH

SALTY

  T S

HEAT

SALT

There is an over-stable oscillation.

time

3.17

3.1811. Normal Modes

The linearized perturbation 
equations are

    

T

t
+

x
= ∇2T (heat)

S

t
+

x
= ∇2S (salt)

P−1∇2
t = − RT

T

x
+ RS

S

x
+ ∇4 (vorticity)

P =
T

= S

T

It is possible to consider an extended 

Rayleigh-Benard problem.

    T0 S0

h

T0 + ∆T S0 + ∆S

RT = g ∆T h3

T

RS = g ∆S h3

T

RS

RT

= ∆S

∆T
= R
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There are normal-mode solutions of the form   f z( ) e t+ i x

2000

2000

    

RT

RS

Rac

≡ 0

r ≡ 0
CS

HF
CF
HS

HS

CF

HF

CS

≡ 0

Statically
stable

Statically
stable

Unit
slope

F
in
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Unstable
direct mode
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oscillations

Stable
(shaded)
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∆T

∆S
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0.20˚C

0.03%

20m

A series of layers in T and S observed under the 

Mediterranean outflow into the Atlantic, and attributed 

to the 'finger' mechanism. The sharp spikes to the right of 

the salinity trace are instrumental and can be ignored. 

The inset summarizes the mean properties of the layers 

and interfaces.

(Tait & Howe, 1971)

Temperature profile under Arctic Ice Island T3, showing 

steps formed by the double-diffusive mechanism.

(Neal, Neshyba & Denner, 1969)
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3.2112. Superposed layers

Examples

(i)  The Mediterranean outflow into the Atlantic ocean is an intrusion of hot 

salty water over colder fresher water

(ii) Solar ponds
fresh, cooler

salty, hot

Interface

Diffusive interface Finger interface

∆T ∆S ∆T ∆S

3.22Diffusive Interface

UNSTABLE

UNSTABLE

  TS

STABLE

The unstable thermal boundary layers either side of the stable intermediate 
layer break away carrying some salt with them.  If the rate of convective 
salt transport is slower than the rate of diffusion across the intermediate 
layer then the layer thickens.
At low buoyancy ratios        , a steady state is possible: the layer is kept thin 
and the diffusive flux is maintained at a constant high value rather than 
decaying like  t -1/2  as it would with no convection.

R
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3.23Parameterisations

Four-thirds law

Continuous density

Flux ratio dictated by 

diffusive transport

(Turner, 1965)

FT = ( )k
g 

  
 
  

1 3

Th − T( )4 3

Th − T( )= Sh − S( )

FS

FT

= 1 2           = D 
  

 
  

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

FS
FT

R  = S / T

Heat / Salt

≈ 0.01
1 2 ≈ 0.1

Summary of convection

Double diffusive convection whenever there are two or more 

components

Nonlinear double-diffusive convection inevitably leads to the formation 

of layers.

    

• Ra = g ∆T h3

= destabilizing buoyancy force

stabilizing viscous force

• Ra > Rac ~ 103 unstable

• Ra >> Rac: Nu= c Ra1/3, c Ra2 /7

FH ∝ ∆T4 /3 , ∆T9 /7

•

•

3.24
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