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2. STABILITY THEORY

When analyzing physical systems, we often start by seeking steady 
(time-independent) states.

 Examples

Steady (equilibrium) states are possible solutions of the full time-dependent 
equations governing the evolution of the system.

But steady states may be UNSTABLE . That is, any small perturbation (deviation) from 
the equilibrium state will grow in amplitude.

Such a state is therefore a highly improbable configuration of the physical system.
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2.3Dimensional analysis

Aim to determine the dimensionless groups of parameters upon which the 
behaviour of the system depends.

There are two independent time scales
    
m[ ]= M   ,    l[ ]= L   ,    g[ ]= L

T2    ,    k[ ]= ML

T

oscillations decay
    
t1 = l

g     
t2 = ml

k

Choose to write                              so that   τ    is a dimensionless variable.
  
t = l

g

    

d2

d 2 + d

d
+ sin = 0

where                            , the ratio of time scales, is the only parameter 

governing the evolution of the system.
    

= k

ml

l

g
=

t1
t2

Then

2.4Equilibrium states

Perturbation 

Linearization

Equilibrium is independent of  κ .

This is a linear equation with constant coefficients

For each value of   θ0   there are two values of   σ   (σ1   and   σ2   say). 

  
= 0 ⇒ sin = 0 ⇒ = 0 = 0,

= 0 + ( )   ⇒ ˙ ̇ + ˙ + cos 0[ ]sin = 0

<< 1 ⇒ sin ≈   ⇒ ˙ ̇ + ˙ + cos 0[ ] ≈ 0

⇒ ∝ e

⇒ 2 + + cos 0 = 0

    ⇒ 2 = − ± 2 − cos 04
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1.    0 = 0 ⇒ 2 = − ± 2 − 4

1, 2   both negative   ⇒ → 0   as   t → ∞

System is STABLE

    

2.    0 = ⇒ 2 = − ± 2 + 4

One of   1, 2   is positive   ⇒ → ∞   as   t → ∞

System is UNSTABLE

General solution is

    = Ae 1t + Be 2 t

2.5

2.6

Linearized perturbation equations

  

˙ ̇ 
1 + 1

2
cos 2 − 1( ) ˙ ̇ 

2 − 1
2
sin 2 − 1( ) ˙ 

2
2 + sin 1 = 0

˙ ̇ 
2 + cos 2 − 1( ) ˙ ̇ 

1 − sin 2 − 1( ) ˙ 
1
2 + sin 2 = 0

Consider equilibrium state
    

1

2

 

 
  

 

 
  = 0

 

 
  

 

 
  

Perturb steady state 1 = + 1 t( )     2 = 2 t( )

˙ ̇ 1 − 1
2

˙ ̇ 2 − 1 = 0   ̇ ̇ 2 − ˙ ̇ 1 + 2 = 0

    
scale time with   

l

gm

m

l

lg
1

2

(System with two degrees of freedom)

3. Stability of a Double Pendulum
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In general, 1 and 2 are different functions of time.  We can find special 
solutions, called  normal modes, in which  1  and  2  have the same time 
dependence.     

where   a,b  are constants.

Normal modes have the property that the shape or configuration of the 
system doesn't change; only the amplitude changes with time.

Since perturbation equations are linear with constant coefficients

where   σ   is the growth rate of the mode.

    

1 = a f t( )

2 = b f t( )

  f t( ) = e t

 Example time

  
The ratio    1

2

   remains constant.

2.74. Normal Modes

Substitute normal-mode solutions into perturbation equations to obtain

which can be written in matrix form as

This has non-zero solutions only if the determinant of the matrix is zero

    

2 a − 1
2

2b − a = 0

2b − 2a + b = 0

*( )
    

2 − 1 − 1
2

2

− 2 2 + 1

 

 
  

 

 
  

a

b

 

 
 

 

 
 = 0

  

⇒ 4 − 1− 1
2

4 = 0

⇒ 2 = ± 2

2.8
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2.9

    

A

B

1.    2 = + 2 ⇒ f t( ) = Ce 24 t + De− 24 t

f t( )→ ∞   as   t → ∞   so mode is UNSTABLE

    

From (*)     
a

b

 

 
 

 

 
 =

1

2 − 2

 

 
 

 

 
 

    

2.    2 = − 2 ⇒ f t( ) = Esin 24 t + F cos 24 t

f t( ) bounded  as   t → ∞  .  Mode is STABLE

From (*)     
a

b

 

 
 

 

 
 =

1

2+ 2

 

 
 

 

 
 

A general solution               can be written as a sum of normal modes.
For example    

1 t( )
2 t( )

 

 
 

 

 
 

Since the amplitude of mode   A   grows in time while the amplitude of 

mode   B   remains constant, every configuration of the system evolves to 

look more and more like mode   A .

When a system is perturbed from an unstable equilibrium, one tends to 

see the mode with the largest growth rate.

= _

G B A= _

2.105. Superposition of Normal Modes
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(System with infinite degrees of freedom.)

Notice from demonstration :
1. A specific spatial structure (wavelength) evolves from random 
disturbances.
2. Instability of one steady state may lead to another (stable) steady state. 

Mode (wavelength) selection

Random disturbances can be expressed as a superposition of pure sinusoidal 
disturbances (Fourier modes), which are the normal modes of this system. 

=
+

+
+

2.116. Surface-Tension (Rayleigh) Instability of a Cylinder of Fluid

2.12

    
k = 2

wavelength

    Will tend to see disturbances with wavenumber ≈ kmax

N.B.  Dimensional analysis gives

~ a

There are an infinite number of normal modes - one for each value of 

the wavenumber

Analysis reveals the growth rate     σ (k )     for each normal mode.

µ : viscosity

γ :  surface tension

    

1
a

  max

    k max
k

σ
STABLE MODESUNSTABLE MODES

k < 1

a
All modes with             (wavelength > 2 a)  are unstable, where a is the 

radius of the undisturbed cylinder.
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      p1 − p2 = − ∇ ⋅ n z =( ) dynamic b.c.

    
p+

t
+ g + 1

2 ∇( )2 = 0

where   n   is normal to interface, from fluid 1 to fluid 2, and the pressure 

is found from Bernouilli.

∇2 = 0 → 0   as   z → ∞

x
= 0 x = 0, a( )

y
= 0 y = 0, a( )

1

z
= 2

z
=

t
z =( )

 

 

 
 
 

 

 
 
 

kinematic 

boundary 

conditions

Then

      u = ∇
(inviscid, irrotational)

z = x, y, t( )
Small disturbances described by interface at 
position                        and fluid velocity

Dense fluid   ( 2)   lies above lighter fluid   ( 1)   in a 
square cylinder of side length a. Steady state has 
interface flat at  z  = 0  and no flow.   

xy

z

aa

ρ2

ρ1

ϕ2

ϕ1

2.137. Rayleigh-Taylor Instability of Superposed Fluids

  

    

∇2 = 0 → 0 z → ±∞( )

x
= 0 x = 0,1( )

y
= 0 y = 0,1( )

1

z
= 2

z
z = 0( )

1tt − 2 tt = R+ ∇ h
2( ) z z = 0( )

The starred variables are dimensionless.  Substitute into equations, 
linearize with    << 1 ,  << 1   and drop stars.

N.B. In linear problem, interfacial conditions are applied at   z  = 0 .

x, y, z( ) = a x* , y* , z*( )   ,     t = 2a3

t* = a

2

*,

    
t1 = a3

     and     t2 = a

′ g 
′ g = 2 − 1

2

g
 

 
 

 

 
 is a ratio of the time scales

and     R = 2 − 1( )ga2

, the Bond number,where     = 1

2

   ,      ∇ h
2 =

2

x2 +
2

y2

2.148. Scaling and Linearization
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2.15

    
k2 = n2 + m2( ) 2[ ]

    ⇒ 1+( ) 2 = R − k2( )k

    
R > k2 ⇒ a2 >

n2 + m2( ) 2

2 − 1( ) g

    For water over air :
 unstable if     a >~ 8.6 mm

Normal modes

The system is unstable if

  2

  R

STABLEUNSTABLE

k

  2 − 1

STABLE

UNSTABLE

a

(n,m ) = (0,2)

(1,1)
(0,1)

    1,2 = e t e±kz cos n x cos m y±

FILM DEMONSTRATION - MOLLO CHRISTIANSEN

For      U >Umin , there is a band of unstable modes (wavelengths).

Linear theory only tells us that disturbances grow. What they grow into is 
the subject of nonlinear analyses.

THE NEUTRAL CURVE

    Umin

U

Parameter 
(e.g. wind                  
       speed)

Wave number 
(frequency)

Disturbance amplified
System unstable

Disturbance damped
System stable

Neutral curve 
(marginal
       stability)

2.169. Shear-Flow Instability
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2.17
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