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1.11. INTRODUCTION TO THE EARTH
1. Basic Description

An early view (about 1664) of the Earth's interior. The writer A. Kircheri conceived the  Earth as a 
ball of solid material fissured by tubes of magma, connecting pockets of eruptive gases to volcanic 
vents on the Earth's surface.

Newton)ℑ = Gm1m2 r2 (

F = mg tan = GmM R2

but mg = GmME RE
2

∴ ME = RE R( )2 M tan( ) ⇒ = 4.5 g cm−3

which is almost twice the density of rocks at the surface 

⇒    variation of density with depth

1.2   The advent of Newton's laws of gravity allowed the earth to 

be weighed, in 1775, by the following means.
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Miners noticed that
temperature increased with depth  ~ 1˚Co/ 30m  ~ 30˚C / km
(c.f. oceans, 20˚C / km and atmosphere, 6 ˚C / km)

1.3

These curves indicate the range of estimates of temperature variation inside the Earth. 
At present the uncertainty is quite high. The consequences of adopting any particular 
estimate can be important in terms of the prediction of melting in the Earth.
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1.4Inge Lehman discovered in 1936 that the inner core was solid, 
leading to the current gross view of the Earth.

H2 (2000)
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1.5

Current Values

c  = 1221 km    Vi  = 7.6 x 109 km3      Mi  = 9.7 x 1022 kg

b  = 3480 km   Vo  = 1.7 x 1011 km3    Mo  = 1.9 x 1024 kg

R  =6371 km   Vm  = 9.1 x 1011 km3   Mm  = 4.0 x 1024 kg

    
 Moceans = 1.41 x 1021 kg               Matmos = 5.1 x 1018 kg
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1.7inner core :

almost pure Fe

  outer core :

Fe plus light elements 

    O, S, Ni.....

Pressure, temperature and composition all play a role

       Mcore ~ 2 x 1024 kg                                  Mcore ~ 2 x 106 kg s-1

1.8(Buffett, H2 , Lister and Woods, 1992 and 1996)
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1.92. Large scale motions

a) There are three general large scale forms of motion in the "solid" 

mantle: broad convective motions; plumes; and subducting  plates.  

Convection is thought to be either throughout the whole mantle 

(thickness 2890 km) or separated into motions in the upper mantle 

(thickness 670 km) and the lower mantle.
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1.10

b) A spherical blob of fluid of radius  a ,  density    ρ0 − ∆ρ    and 

dynamic viscosity    rising slowly and steadily in a uniform infinite 

fluid of density  ρ0  and dynamic viscosity  µ0 , at low Reynolds 

number,   Re= ρ0Ua / µ0  << 1        ,   is a famous problem in Stokes 

flow  (c.f. GKB textbook  pp 230-240)  with solution    

0 − ∆

0 0

    Re = 0 Ua 0 < < 1
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1.11
c) A hot isolated blob expands as it rises due to conduction. The 

neighbouring fluid becomes warm and light and rises with the 

blob.  This is laminar entrainment by conduction, in comparison 

with turbulent entrainment by mixing (subsequent lecture) in 

volcanic plumes, etc.  Solution of equation indicates and 

laboratory experiments confirm that 

a = K z

constant

with    K = f( )Ra−1 /3 ,   where    Ra = ∆ V 0

∝ z−3

    ∝ z3

(Griffiths, 1986)

Thus detachment must result, and lead to a rising head followed by 

a continuously flowing tail.  After detachment from the source, the 

head and tail are insensitive to the details of the source geometry 

and flow prior to detachment, with a continuous inward spiral of 

material.

For large  t

and hence knowledge of  a   gives  z .

    V ∝ z9 / 5 a ∝ z3 / 5( ) U ∝ z1 /5

1.12d) In a starting plume driven by a constant flux    ,   initially 

(while still attached)

    a ∝ t1/ 3 U ∝ t−2 / 3

    

ℑ

4
3 a3 = ℑt
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1.13

e)  Assuming that a plume arises from the core mantle boundary,   

a  ~ 1000 km   (and possibly flattens to 2000 km).  If it arises from 

the base of the upper mantle  a  ~ 300 km .  Both probably exist.

f) The broad scale convection takes 'solid' rock into regions where 

due to pressure release  some  of the material will melt.  If the 

density of the melt is less than that of the  surrounding matrix it 

can rise through the matrix by a process known as compaction.  

This is governed by Darcy's law for flow through a porous medium.

permeability

q = k ∇p

viscosity

1.14
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1.153. Physical properties of magma

These are known mainly from observations on lava flows and lava 

lakes, and from laboratory experiments with associated empirical 

relationships.
a) Compositional variations

SiO2 72.8 57.9 49.2 46.9

TiO2   0.3   0.9   1.8   0.2

Al2O3 13.3 17.0 15.7   3.7

Fe2O3   1.5   3.3   3.8    ---

FeO   1.1   4.0   7.1  10.2

MgO   0.4   3.3   6.7 33.0

CaO   1.1   6.8   9.5   5.3

Na2O   3.5   3.5   2.9   0.5

K2O   4.3   1.6   1.1   0.2

Average compositions of selected magmas, expressed as wt.% major element oxides.

1Average composition of continental crust. 2Average composition of oceanic crust; makes up 

90% of extrusive volcanic rocks. 3Ancient magmas no longer erupted; high MgO content.

Rhyolite1 Andesite      Basalt2        Komatiite3

1.16b) Density
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d) Rheology

1.17
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c) Viscosity

1100 1200 1300 1400 1500

101

103

105

107

Temperature (˚C)

V
is

co
si

ty
 (

cm
2  

s-
1 ) Rhyolite  (73.4% SiO2)

Andesite  (60.7% SiO2)

Basalt  (50.7% SiO2)

Basalt  (46.1% SiO2)

(From Murase & McBirney 1973)

1.18Main new physical concepts     

                                 (in order of appearance)

compositional convection, due to compositional differences between

melt and solid

laminar entrainment by rising hot plumes

separation of small amounts of melt from the interstitial crystal mush by 

compaction

large (huge?) variation of physical (and chemical) properties between 

magmas

density of melt originating from solid determines subsequent motion

variety of solidification processes

solidification/ melting of retaining boundaries due to thermal transfers

slow flows of viscous fluids

ingestion of floor by melting due to the heat transfer from a hot turbulent 

gravity current

role of hot ash particles in driving volcanic plumes and blast flows 
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1.19
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