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1 Introduction

Perhaps you have heard that turbulence is the most difficult problem in
fluid mechanics and, according to some, the greatest unsolved problem in
physics. One indication of the difficulty is that it is impossible to give a
satisfactory definition of a “turbulent flow”. But everyone agrees that one
property of turbulence is greatly enhanced transport of passive contaminants.
For example, relying only on molecular agitation, a dissolved sugar molecule
takes years to diffuse across a coffee cup, and on that time-scale the coffee
will surely evaporate. With a spoon the coffee drinker can create eddies that
transport dissolved sugar throughout the cup in less than one second. This
is an example of eddy diffusivity.

Fluid mechanics textbooks often often justify eddy diffusivity by appeal-
ing to an analogy between turbulent eddies and molecular diffusion — per-
haps this notion originates with G.I. Taylor’s 1915 paper entitled “Eddy
motion in the atmosphere”? In any event, the molecular analogy, supple-
mented with some hand-waving, leads to the notion of an eddy diffusivity
and for many scientists this is the end of the turbulence problem.

Our goal in this lecture is to explain very explicitly the assumptions
behind Taylor’s “proof by analogy” and to illustrate the interesting points at
which the analogy fails. We will pursue this program by working with some
very simple model flows for which analytic results, such as expressions for
the eddy diffusivity, are available. As you will soon see, these model flows
do not greatly resemble turbulence, but then neither does molecular motion!
Our excuse is that soluble examples are always diverting and educational.
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2 The renovating wave model

A recipe for constructing soluble models

The main problem in analyzing transport is solving the differential equations
which describe the motion of particles in even very simple flows. However
there is a class of flows for which this task is trivial. These are steady and
unidirectional flows, such as u = sin y. A particle which starts at (a, b) at
t = 0 finds itself at (a+ τ sin b, b) at t = τ . This is dull, but it becomes more
interesting if at intervals of τ we “renovate” the flow by randomly picking a
new direction along which the velocity acts. In this way we can construct
a sequence of iterated random maps and calculate diffusivities, and other
statistical properties, by averaging the exact solution. I learned of this trick
from the literature on dynamo theory. The book Stretch, Twist, Fold: the
Fast Dynamo is highly recommended for students interested in all aspects of
stirring and mixing. .

2.1 The renovating wave (RW) model

As a particular example we now formulate the renovating wave (RW) model.
We divide the time axis into intervals

In ≡ {t : (n− 1)τ < t < nτ} , (1)

and in each interval we apply a velocity, u = (−ψy, ψx), derived from the
streamfunction

ψn(x, y, t) = k−1U cos[k cos θn x + k sin θn y + ϕn] , (2)

where θn and ϕn are independent random variables uniformly distributed in
the interval [−π, π]. Thus in each In there is a steady, unidirectional velocity
with sinusoidal profile (a single wave). There is sudden and complete loss of
all information about the past velocity at t = nτ because at these instants
we “renovate” the velocity by picking new random angles θ and ϕ. (This
means that the velocity correlation function, C(t), is zero if t > τ .)

The renovating wave model can be nondimensionalized by using k−1 as a
unit of length and and 1/(Uk) as a unit of time. With this choice, the model
contains a single dimensionless parameter, τ∗ ≡ τkU , which is a measure of
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the persistence of the motion. Much of the literature on random advection-
diffusion uses model velocity fields which are δ-correlated in time. We can
recover this limit as a special case by taking τ∗ → 0.

Using dimensionless variables, a particle which is at xn = (xn, yn) at
tn = nτ∗ moves to xn+1 at t = (n + 1)τ∗ where

(xn+1, yn+1) = (xn, yn) + τ∗ sin (cnx + sny + ϕn) (sn,−cn) . (3)

with sn ≡ sin θn and cn ≡ cos θn. Thus motion in the renovating wave
problem is equivalent to an iterated sequence of random maps.

2.2 The single–particle diffusivity

It is very easy to calculate the diffusivity in the RW model (and much more
difficult to interpret the answer). The average of a function of the two random
angles θ and ϕ (suppress the subscript n) is defined by

〈f〉 =

∮
dϕ

2π

∮
dθ

2π
f(θ, ϕ). (4)

Therefore, using (3),

〈(xn+1 − xn)2〉 =
τ 2
∗
4

. (5)

The computation is trivial if the integral over ϕ is evaluated first.
In (5), following our previous discussion based on Einstein’s derivation

of the diffusion equation, we are computing the statistics of dispersion along
the x-axis. Because the renovating wave model is isotropic, dispersion in the
y-direction is identical to that in the x-direction.

Because all of the waves are independent and identically distributed it
follows that after n renovation cycles

〈(xn − x0)
2〉 = n

τ 2
∗
4
. (6)

But t = nτ∗, and 〈(xn − x0)
2〉 = 2Dt, so that using dimensionless variables

the diffusivity is

D =
τ∗
8
. (7)
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t=1τ t=2τ t=3τ

t=4τ t=5τ t=6τ

t=7τ t=8τ t=9τ

t=10τ t=11τ t=12τ

Figure 1: Stretching of a small spot, r 	 1 where r is the initial radius of the
spot, by a succession of random sinusoidal flows. The dotted circle is the initial
spot.

Sometimes D is referred to as the single-particle diffusivity. “Single-particle”
emphasizes that D strictly applies only to the RMS displacement of a particle
from its initial position; D contains no information concerning the deforma-
tion of a patch of tracer, nor of any other quantity involving correlated mo-
tion. Thus, using dimensional variables, the diffusivity in (7) is D = U2τ/8,
which is independent of k. Because D is independent of the scale of the wave,
even a spatially uniform, but random-in-time velocity (the case k = 0), has
a single-particle diffusivity.
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t=1τ t=2τ t=3τ

Figure 2: Stretching of a blob with r = 1, where r is the initial radius. The dotted
circle is the initial patch.

2.3 Deformation of variously sized blobs

To emphasize the importance of understanding more than single-particle dif-
fusivities we take a digression and illustrate how the deformation of an ini-
tially circular blob of fluid depends on the blob radius r. (Recall that we
have used k−1 as unit of length; in terms of dimensional variables the relevant
nondimensional parameter is kr.)

If the initial blob is much smaller than the wavelength of the velocity
then on the scale of the blob the velocity profile is a linear function of the
coordinates. Because of this simplicity, the first few iterations deform the
circular blob into an ellipse which must have the same area as the initial
circle. We will see in the next lecture that the major axis of the ellipse grows
exponentially while the minor axis shrinks so that the area is fixed. Once
the dimensions of the ellipse are comparable to the wavenumber of the flow,
more complicated deformations occur. Ultimately the blob will be stretched
into a folded filament as in figure 1.

The blob has the same scale as the velocity field if r ∼ 1. Because there
is no scale separation there is no easy description of the action of the flow on
the blob, see figure 2.

If r � 1 then we are in the “eddy diffusivity” limit in which the scale
of the velocity field is much smaller than the scale of the tracer. This case
is shown in figure 3. The action of the waves perturbs the edge of the blob,
making it look “fuzzy”. In fact, the area is preserved, but the circumference
of the blob grows exponentially. We will be discussing this type of problem
for the remainder of this lecture.
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t=1τ t=2τ t=3τ

t=4τ t=5τ t=6τ

t=7τ t=8τ t=9τ

t=10τ t=11τ t=12τ

Figure 3: Stretching of a big blob r � 1, where r is the initial radius of the blob.
The dotted circle representing the initial patch may not be visible beneath the
wiggly boundary of the blob.

2.4 The Lagrangian correlation function

In (7) we gave the diffusivity of particles moving in an ensemble of renovating
waves. How do we obtain the Lagrangian velocity autocorrelation function
and verify Taylor’s formula that

D =

∫ ∞

0

C(t) dt ? (8)
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Considering this question, we encounter an annoying technical difficulty: our
derivation of (8) assumes that the velocity statistics are stationary. But the
renovating wave ensemble, as we defined it back in (1) and (2), is not a
stationary stochastic process. This is because with our original definition
all members of the ensemble renovate at the same instants t = τ , t = 2τ
etcetera. In order to obtain a stationary process we should initiate differ-
ent realizations at uniformly distributed points during the renovation cycle.
Thus, for realization number j, we pick a random time τ (j) which is uniformly
distributed in the interval [0, τ ] and renovate first at t = τ (j) and then sub-
sequently at t = τ (j) + τ , t = τ (j) +2τ etcetera. With this new and improved
formulation of the RW model the Lagrangian correlation function of u(t) is
a “triangular” function:

C(t) =
U2

4

(
1 − t

τ

)
H(τ − t) , (9)

where H is the step function and U is the velocity in (2). The area of under
this correlation function is D = U2τ/8.

3 The eddy diffusion equation

3.1 The ensemble averaged Green’s function

Now that we have obtained the RW diffusivity in (7) we turn to the derivation
of the eddy diffusion equation. For each realization we introduce the Green’s
function which is

Gt + u·∇G = 0, with G(x,x0, 0) = δ(x − x0). (10)

The solution of the problem above is

G(x,x0, t) = δ(xt − x0) , (11)

where xt is the position at time t (in a particular realization of u) of the
particle which started at x0.

The ensemble averaged Green’s function is

g(r, t) = 〈G(x,x0, t)〉 , r ≡ |x − x0| , (12)
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where we have assumed that the random velocity is isotropic, homogeneous
and stationary so that g can depend only on the distance r and the elapsed
time t.

Possessing g(r, t), we can then represent the ensemble-averaged solution
of the initial value problem

ct + u·∇c = 0, c(x, 0) = c0(x) , (13)

as the convolution

〈c〉(x, t) =

∫
c0(x − x′)g(|x′|, t) dx′ . (14)

(We are assuming that the initial condition c0 is the same for all realizations.)
At this point, the analogy between (14) and the master equation of lecture

1 is obvious. With the master equation in mind, we can anticipate that a
variant of Einstein’s derivation of the diffusion equation can be applied to
(14). Rather than develop a general derivation we prefer to use the renovating
wave model as a concrete illustration of how one can obtain g, and then pass
from the integral equation in (14) to an approximate diffusion equation.

3.2 The averaged Green’s function of the RW model

There are at least two ways of obtaining g(r) in (12) for the RW model: the
hard, straightforward way (see the appendix) and the easy, devious way. Let
us be devious.

We begin by calculating the probability density function (PDF) of dis-
placements in a single pulse of the RW model. Because the ensemble of
velocities is isotropic and homogeneous there is no harm in supposing that
the particle is at the origin and the x-axis is aligned with the direction of
the velocity. That is, put (xn, yn) = (0, 0) and θn = π/2 in (3). Thus, the
displacement r produced by a single pulse is

xn+1 − xn = τ∗ sinϕn, and r = |xn+1 − xn|. (15)

The PDF of the random variable r can be obtained from the PDF of ϕ, that
is P (ϕ) = 1/2π, using the rule for transforming probabilities:

P (r) =
∑

P (ϕ)
∣∣∣dϕ
dr

∣∣∣ , ⇒ P (r) =
2

π

H(τ∗ − r)√
τ 2
∗ − r2

. (16)
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Figure 4: Displacements of 40, 000 particles in independent realizations of the
the RW model. The left panel shows the final position of particles which all start
at the center of the the circle after one pulse of the wave. The density of points
corresponds to g(r) in (17). The histogram on the right shows the number of
particles at a distance r from the center; this is the function P (r) in (16).

In (16) H(τ∗ − r) is a Heaviside step function which ensures that there are
no displacements greater than τ∗. (The sum in (16) is because there are four
values of ϕ corresponding to a single value of r.)

The averaged Green’s function is now given by

g(r) =
P (r)

2πr
, ⇒ g(r) =

1

π2

H(τ∗ − r)

r
√

τ 2
∗ − r2

. (17)

The geometric factor 2πr is included because g(r) is a concentration. That
is, P (r)dr the expected number of particles which fall into the differential
annulus between r and r + dr and g(r) is the expected number of particles
per area in this same annulus; see figure 4.

Now that we have the averaged Green’s function of a single pulse we can
obtain the evolution the ensemble averaged concentration, 〈c〉, over many
pulses. Because each pulse is independent of the preceeding pulses we have

〈c〉 (x, (n + 1) τ∗) =

∫
〈c〉(x − x′, nτ∗)g(|x′|) dx′ . (18)

The master equation above, with g(r) in (17), is an exact description of the
evolution of 〈c〉 under advection by the RW model.
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3.3 The diffusion equation

With the master equation (18) in hand, we can use Einstein’s approximations
to obtain the diffusion equation. Using the dimensionless variables of the
renovating wave model, we have

〈c〉t ≈
τ∗
8
∇2〈c〉 . (19)

We leave this as a homework exercise and instead we take a different route
to (19).

Because the Fourier transform of a convolution is the product of the
Fourier transforms, we can simplify (18) by transforming. The Fourier trans-
form of f(x) is defined here1 as

f̃(k) =

∫
e−ik·xf(x) dx , f(x) =

1

2π

∫
eik·xf̃(k) dk . (20)

Applying the transform to (18) we obtain

〈̃c〉(k, nτ∗) = g̃(k)nc̃0(k) , k ≡ |k| . (21)

With a good table of integrals one can discover that the Fourier transform
of the averaged Green’s function, g(r) in (17), is

g̃(k) = J2
0 (kτ∗/2) , (22)

where J0 is the Bessel function.
The diffusion equation describes the evolution of large spatial scales,

which is the same as small wavenumbers. This means that we simplify (21)
by taking kτ∗/2 	 1 and using the approximation J0(kτ∗/2) ≈ 1− (k2τ 2

∗ /16)
to write

〈̃c〉(k, nτ∗) ≈ exp
{
n ln

[
1 − (k2τ 2

∗ /8)
]}

c̃0(k) . (23)

But now, since n = t/τ∗ and ln[1 − (k2τ 2
∗ /8)] ≈ −k2τ 2

∗ /8, we have

〈̃c〉(k, t) = e−Dk2tc̃0(k) (24)

where, as in (19), D = τ∗/8. Equation (24) is the equivalent to the decay of
Fourier components given by (19).

This derivation based on Fourier analysis explicitly recognizes that the
diffusion approximation is valid only for wavenumbers which satisfy kτ∗/2 	
1. This is a precise statement of the scale separation assumption which
underlies Einstein’s approach.

1By denoting the wavenumber with k we are recycing notation used in (2).
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4 Ensemble averages and single realizations

In hydrodynamic dispersion, particles which begin at neighbouring points
have similar histories in any single realization. Marbled endpapers in old
books were produced by floating coloured inks on water, stirring the sur-
face, and then capturing the swirls by carefully lowering a sheet of paper
onto the inky film [3]. This technique, probably originating in Persia in the
1400s, presses hydrodynamic correlations into the service of art. Fortunately
for printers, and distressingly for statisticians, a single realization does not
resemble the blurry diffusion equation.

4.1 Eddy diffusion of a front

Figure 5 shows a single realization of the evolution of a “front” under the
RW advection process. The front is the sharp border which separates white
from dark; initially this line coincides with the y-axis. We suppose that the
concentration is c = −1 for x < 0 and c = +1 for x > 0. Successive pulses
of the renovating wave produce an increasingly folded front and the c = −1
fluid invades the region x > 0 in long thin tendrils. The central question is:

How well is the process in figure 5 described by the diffusion equation?

We know that given many realizations of this process, the long-time en-
semble average of these realizations will follow the diffusion equation 〈c〉t =
D〈c〉xx, with the initial conditions c(x, 0) = ±1. The solution of this problem
is

〈c〉 = erfη , where η =
x

2
√
Dt

. (25)

Figure 6 shows this smooth erf solution which, of course, looks nothing like
figure 5. If the dark fluid in figure 5 contained radioactive contaminant, and
we wanted to estimate the maximum exposure of at some value of x > 0,
then the erf solution in (25) is not useful.

On the other hand, diffusivities are useful if we want to know how many
particles are at such-and-such a distance from their initial location. Thus,
figure 7 shows a histogram of the positions of 10,000 particles which all start
on the line x = 0 (the initial front). The Gaussian curve in figure 7 is
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t=3τ t=6τ t=9τ t=12τ

t=15τ t=18τ t=21τ t=24τ

Figure 5: Evolution of a front under the advection by the RW model. The front
initially coincides with the y-axis.

the corresponding prediction for the PDF of positions which is obtained by
solving (19) with the initial condition 〈c〉 = δ(x):

c(x, t) =
1√

4πDt
exp

[
− x2

4Dt

]
, D =

τ∗
8
. (26)

The histograms converge slowly to this Gaussian prediction. This asymptotic
success shows that the diffusion equations correctly predicts the dispersion
of particles when t � τ∗.

An amusing aspect of the simple problem in figure 5 is that we can easily
calculate the RMS fluctuations of c around the ensemble average concentra-
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Figure 6: Evolution of the ensenble-averaged concentration c and its variance
during the evolution of the front underthe RRW model. Note how most of the
variance is localised around x = 0.

tion in (25). Because c = ±1 we have 〈c2〉 = 1. Therefore, defining the
fluctuation as

c′ = c− 〈c〉 , (27)

we have

〈c′2〉 = 〈c2〉 − 〈c〉2 = 1 − erf2(η) . (28)

The variance 〈c′2〉 is also indicated in figure 6.

4.2 Coarse grained averages and spatial filters

The process in figure 5 is translationally invariant in the y-direction and so
using only a single realization we can calculate a spatially averaged concen-
tration

c̄(x, t) ≡ lim
L→∞

1

2L

∫ L

−L

c(x, y, t)dy . (29)

The evolution of c̄ will be asymptotically described by the diffusion equation.
In a general case, in which there is no statistical symmetry along a par-

ticular direction, one can take a single realization and define a coarse-grained
or low-pass filtered concentration by:

ĉ(x, t) ≡
∫
K(x − x′)c(x′, t) d2x′ ; K(|x|)is a filter. (30)
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Figure 7: At t = 0 the front in figure 5 is tagged by placing 10000 particles along
the y-axis. The historgram above shows the subsequent x-locations of these marker
particles as the front is distorted by the RW model with τ∗ = 1. The Gaussian
curve is given by (26).

The hope is that scale separation between the width of the erf and the swirls
will ensure that ĉ ≈ 〈c〉. Thus the kernel of the filter, K in (30), might be a
Gaussian with a width which is at once much smaller than the thickness of
the erf transition zone and much greater than an individual swirl in figure 5.

Scale separation is essential here because the filtering operation defined
by the convolution in (30) is not strictly an “average”. Some of the properties
we take for granted when we use averages are

〈c′〉 = 0 , 〈〈c〉〉 = 〈c〉 , 〈〈a〉〈b〉〉 = 〈a〉〈b〉 . (31)

For the ensemble average, as indicated in (31), everything works.
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For a filter, such asˆin (30), we can define the fluctuation concentration
c′′ in analogy with (27):

c′′ ≡ c− ĉ . (32)

But then ĉ′′ �= 0 and none of the other desiderata in (31) follow. In other
words, spatial filtering instead of the ensemble averaging introduces a host
of extra assumptions which should be carefully assessed (but almost never
are).

4.3 A digression: Brownian bugs

I have hinted darkly at problems associated with spatial filters. These issues
are largely ignored by optimistic scientists. The hope is that scale separation
justifies the application of diffusive closures to the coarse-grained version
of a single realization. Perhaps a justification of this optimistic approach
is that the alternative seems so repellant. Nonetheless, it is important to
realize that interpreting coarse-grained distributions as ensemble averages
involves a nontrivial assumption. The best way of exposing this assumption
is to exhibit a problem in which spatial filters and ensemble averages are
very different. Accordingly, as a model of biological processes, we consider
random walkers which both die and reproduce. We refer to these biological
walkers as Brownian bugs.

The model is formulated by first placing N � 1 Brownian bugs randomly
in the unit square; the boundary conditions are periodic in both directions.
Each cycle of the simulation begins with a random walk step in which bug
k, located at xk = (xk, yk), is displaced to a new position

(x′
k, y

′
k) = mod [(xk, yk) + (δxk, δyk); 1] . (33)

In (33), δxk and δyk are Gaussian random variables and the “mod” is to en-
force the periodic boundary conditions and keep each bug in the unit square.
After this random walk step, the second part of the cycle is a “coin toss”
which results in either death (heads) or division (tails). When a lucky bug
divides, the offspring is placed at the same position as the parent. This cycle
of random displacement and random birth/death is repeated many times in
order to simulate many generations of reproduction, death and dispersion.

The simulation shown in figure 8 was implemented in MATLAB using
these rules. The striking result is that the density of bugs spontaneously
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develops large-scale clumps and voids. Figure 8 seems to show an inverse
cascade of patch sizes: patches emerge on small scales in panel (b) and then,
after more cycles, panels (c) and (d) show that the patches have expanded
in scale. To quantify this impression, we have computed one-dimensional
concentration spectra which show that an increasingly red spectrum develops.

A seemingly innocuous ingredient of the brownian-bug model is that
deaths can occur anywhere, but births are always adjacent to a living bug.
This asymmetry between birth and death is crucial for the spontaneous de-
velopment of the voids and patches evident in figure 8: if one simulates birth
by randomly placing the new bugs in the unit square then no patches form.
This subtle point shows that making the births coincide with living bugs —
surely a realistic feature of the model — introduces pair correlations. From
another perspective, one can view the voids in figure 8 as the result of ran-
dom extinctions which create voids. The step length of the random walk in
figure 8 is such that diffusion is not strong enough to fill in the voids created
by extinction.

The ensemble average of the Brownian bug process is described by

〈c〉t = D∇2〈c〉 + (λ− µ)〈c〉 . (34)

where λ is the birthrate and µ the deathrate. However if the coin-toss is fair
then births and deaths are equiprobable and consequently λ = µ. In this
case the solution of (34) which satisfies the initial condition is

λ = µ , ⇒ 〈c〉 = 1/N . (35)

The uniform density above is the correct answer for the ensemble average con-
centration: the location of the voids and patches in figure 8 are accidently
determined by the MATLAB random number generator. If we ensemble av-
erage many such patterns then the patches and voids must disappear because
the process is spatially homogeneous.

On the other hand, the spatial average of a single realization, such as that
in figure 8, will still show concentration patches2. Thus, in this Brownian
bug example, ĉ �= 〈c〉. Indeed, the patches are surely an important feature
of the “real” answer. The correct but useless result in (35) exposes a failure
of ensemble averaging. What do we make of this example? Are biological

2If the width of the kernel, K in (30), is larger than the dimension of the patches then
filtering will remove the patches. However, since the patches expand in scale, eventually
they will become so large that they survive the blurring power of the filter.
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0 0.5 1
0

0.2

0.4

0.6

0.8

1

X

Y

(b) 10 cycles, N=19,692
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(d) 1000 cycles, N=21,814

Figure 8: (a) The initial condition is N = 20, 000 randomly located bugs in the
unit square. Panels (b), (c) and (d) then show the development of patches after
10, 100 and 1000 cycles of random displacement followed by random birth/death.
As the panel titles indicate, there are random fluctuations in the total size, N , of
the population. The RMS step length of the underlying random walk is 〈δx2

k〉1/2 =
〈δy2

k〉1/2 = 0.005.

problems, with reproduction and death, so fundamentally different from the
advection-diffusion of chemical tracers? I am not prepared to answer that
question in these lectures and I leave further development of this example to
the students.
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5 Variance budgets

In this section we return to basics and present an alternative view of eddy-
diffusivity. The following arguements emphasize the importance of the con-
centration variance equation.

5.1 The Reynolds’ decomposition

We depart from the advection-diffusion equation

ct + u·∇c = κ∇2c + s , (36)

where κ is the molecular diffusivity of c and u is an incompressible (∇·u = 0)
velocity field. Also in (36) we have included a source term, s(x, t), which
forces the system.

The velocity u in (36) is a single realization selected from an ensemble of
velocity fields. Then we can introduce the “Reynolds’ decomposition”:

c = 〈c〉 + c′ , (37)

where 〈〉 is the ensemble average and c′ is the fluctuation from 〈c〉 which
arises in a single realization. Taking the ensemble average of (36) gives

〈c〉t + 〈u〉·∇〈c〉 + ∇·〈u′c′〉 = κ∇2〈c〉 + s . (38)

(The source s is taken to be deterministic, 〈s〉 = s.)
Subtracting the ensemble average in (38) from (36) gives the fluctuation

equation

c′t + 〈u〉·∇c′ + ∇·[u′c′ − 〈u′c′〉] − κ∇2c′ = −u′ ·∇〈c〉 . (39)

Equation (39) has been organized by taking the source term to the right
hand side. Thus we see that advective distortion of the mean gradient, ∇〈c〉,
generates the fluctuation c′.

5.2 Consequences of linearity

If c′ = 0 at t = 0 then, because (39) is linear, c′ and ∇〈c〉 will be linearly
related. It follows that the eddy flux 〈u′c′〉 will also be linearly related to
the mean gradient ∇〈c〉. These simple observations, in alliance with the
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scale separation assumption, can be used to extract a surprising amount of
information [2].

The scale separation it is plausible that this linear relation between eddy
flux and mean gradient can be developed in a series of the form

〈u′c′〉i = −D(1)
ij ∗ 〈c〉,j −D(2)

ijk ∗ ∇〈c〉,jk + · · · (40)

The ∗ in (40) indicates that the product also involves convolutions in time,
such as

D(1)
ij ∗〈c〉,j =

∫ t

0

D(1)
ij (t′)〈c〉,ij(t− t′) dt′ . (41)

If the mean field is varying slowly over an eddy decorrelation time then the
convolution above approximates to

〈u′c′〉 ≈ −D(1)
ij ∗〈c〉,j ≈ −

∫ ∞

0

D(1)
ij (t′) dt′ 〈c〉,j(t) . (42)

In the simplest cases3

∫ ∞

0

D(1)
ij (t′) dt′ = Deδij , (43)

where De is the eddy diffusivity. Using (43) the flux gradient relation is

〈u′c′〉 − κ∇〈c〉 = −D∇〈c〉 , D ≡ De + κ , (44)

and the evolution of the average concentration is determined by

〈c〉t ≈ D∇2〈c〉 + s . (45)

5.3 The Gx-trick

The tensors D(n)(t) are determined by the linear operator on the left hand
side of (39). Thus, these tensors depend on (i) the statistical properties of
u′; (ii) the mean advection 〈u〉; (iii) the molecular diffusion κ. The essential

3“Simple” means that the velocity ensemble is isotropic, homogeneous and reflexionally
invariant. The last requirement means that the mirror image of a particular realization
of u′ is just as probable as u′. If the ensemble is reflexionally invariant then D(1)

ij is a
symmetric tensor. This subtle point will be illustrated later in this lecture series.
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point is that these tensors do not depend on 〈c〉. At least for the first term

in the series, D(1)
ij , we can exemplify this by noting that there is a special

solution of (36) in which 〈u〉 = s = 0 and concentration has the form

c = Gx + c′ . (46)

In (46) the mean concentration is simply 〈c〉 = Gx and the fluctuation c′ is
determined from a reduced version of (39):

c′t + u′ ·∇c′ − κ∇2c′ = −Gu′ . (47)

As emphasized above, the advection of the mean gradient appears as a source
term for c′ on the right hand side of (47). Because (47) is linear, and G is
constant, the solution c′ will be proportional to the large-scale gradient G
and otherwise independent of G.

This Gx-trick enforces the platonic ideal of scale separation between the
eddies and the mean field. If the concept of an eddy diffusivity is to have
any validity, then it must work in the simplified context of (47). In fact, the
Gx-trick is used in doubly-periodic turbulence simulation to calculate eddy
diffusivities. In that context, u′ = (u, v) and c′ are efficiently represented by
Fourier series. Then (47) is solved using a spectral code and the eddy flux is
estimated by computing the integral

〈u′c′〉 = A−1

∫∫
u′c′ dx dy , (48)

over the computational domain. (In (48) A is the total area of the domain
so 〈1〉 = 1). Notice that in (48) the ensemble average is identified with
an integral over the domain. Later in these lectures we will use this same
procedure to analytically calculate the eddy diffusivities of some spatially
periodic velocity fields.

5.4 The concentration variance equation

An equation for the concentration variance,

Z ≡ 1

2
〈c′2〉 , (49)

is obtained by multiplying (39) by c′ and ensemble averaging. The result is

Zt + 〈u〉·∇Z + ∇ · 〈1
2
u′c′

2〉 − κ∇2Z = −κ〈∇c′ ·∇c′〉 − 〈u′c′〉·∇〈c〉 . (50)
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The terms on the left hand side of (50) can be interpreted as fluxes of Z. The
two terms on the right hand side of (57) are respectively a source of variance
due to advective distortion of the mean gradient, and dissipation of variance
by molecular diffusion κ.

5.5 Heuristic closure arguments

In (50) there are three terms which we would like to relate to the mean
quantities 〈c〉 and Z. First, there is −〈u′c′〉 ·∇〈c〉 = De∇〈c〉 ·∇〈c〉. The
remaining two terms are 〈u′c′2/2〉 and κ〈∇c′ ·∇c′〉.

The correlation 〈u′c′2/2〉 in (50) is an eddy-flux of c′2, just as 〈uc′〉 is an
eddy flux of c′. Thus, by analogy with (44), we can argue that

1

2
〈u′c′

2〉 = −De∇Z . (51)

This heuristic argument is discussed further in appendix B.
The final term in (50) is the dissipation of variance by molecular diffu-

sivity, κ〈∇c′·∇c′〉. The simplest closure assumption we can make about this
term is that

κ〈∇c′ ·∇c′〉 ≈ βZ , (52)

where β has the dimensions of time. The closure above relies on dimensional
analysis and the linearity of (36). However, in anticipation of a later discus-
sion of the Batchelor spectrum, we now make some heuristic arguments in
support of (52) which suggest that β is independent of the molecular diffu-
sivity.

Suppose that the mean field 〈c〉 has a length scale L and that the velocity
field u′ has a length scale Lu (in the RW example Lu = k−1). The scale
separation assumption is that

L � Lu . (53)

The inequality in (53) is exemplified in idealized case of (46) in which L is
infinite. If follows that advective distortion of ∇〈c〉 generates c′ first on the
scale Lu. Then, following our arguments in lecture 1, the scale of c′ will be
exponentially reduced, like exp(−γt), where γ is roughly proportional to the
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RMS strain of u′. This exponential contraction continues till the cascade is
halted by molecular diffusion at the scale

- ≡
√

κ

γ
. (54)

Using arguments from lecture 1, we can estimate that the time taken for this
arrest at - is

t
 ≈ γ−1 ln (Lu/-) . (55)

Then the smallest length scale in the c′-field is - and, plausibly, the gradient
is ∇c′ ∼ c′RMS/- where c′RMS ≡

√
2Z. We now have a simple estimate

κ〈∇c′ ·∇c′〉 ∼ γZ. This rough argument leads to the closure in (52), with
β ∝ γ, and the caveat that t > t
.

We can summarize the arguments above by rewriting the variance equa-
tion (50) as

Zt + 〈u〉·∇Z −D∇2Z = De∇〈c〉·∇〈c〉 − βZ , (if t ≥ t
) . (56)

The most dubious approximation is probably (52). To conclude this discus-
sion we will interpret the variance equation in two specific examples.

5.6 Example 1: the dispersing front

First consider the dispersing front in figure 5. In this example s = κ = 〈u〉 =
0 and we have already know from (28) that

Z =
1

2

[
1 − erf2 (η)

]
, η =

x

2
√
Dt

. (57)

On the other hand, since κ = 0, it follows that D = De and β = 0. With
these simplifications the variance equation (50) reduces to

Zt −DZxx = D∇〈c〉·∇〈c〉 , (58)

where 〈c〉 is the erf-solution in (25). As a consistency check, one can show
that (57) is the solution of the variance equation in (58).

This example shows that the destruction of variance by molecular diffu-
sivity is not required in order to prevent an accumulation of variance: the
source on the right hand side of (58) is balanced by eddy diffusion.
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Figure 9: A simulation of the source problem, with s = cos(x/6), using the RW
model to generate u in (36). There is no molecular diffusivity (κ = 0). The
left hand panel shows the whole domain (the length of the side is 12π) while
the right hand panel shows a smaller subdomain (the length of the side is 2π).
The concentration fields were generated by 10 pulses of the renovating wave using
τ∗ = 3 (that is, t = 30).

5.7 Example 2: a large-scale source

In this second example the tracer is injected by a source s = cos qx in (36).
We also take 〈u〉 = 0 so that the mean concentration field is obtained by
solving

〈c〉t −D∇2〈c〉 = cos qx , ⇒ 〈c〉 =
1

Dq2

[
1 − e−Dq2t

]
cos qx . (59)

(To apply the diffusion equation the scale of the source, q−1, must be much
larger than the scale of the velocity field.) A steady mean concentration
pattern is established when Dq2t � 1.

The concentration variance is determined by solving the variance equation
(56)

Zt −D∇2Z =
1

2

De

D2q2

[
1 − e−Dq2t

]2

(1 − cos 2qx) − κ〈∇c′ ·∇c′〉 . (60)

In (60), the solution in (59) has been used to evaluate the source term on
the right hand side and we have left the diffusive sink in its exact form.
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Figure 10: This figure compares analytic results with a numerical solution of
(62), taking q = 1/10, and using the RW model to generate u. The persistence
parameter is τ∗ = 2 and the results are at t = 400 (that is, 200 renovation cycles).
The concentration c(x, 400) is calculated on a 400 × 400 grid using the method
in appendix B. In the top panel there are three curves: the concentration as a
function of 0 < x < 20π along the line y = 0 (the jagged dotted curve); the
y-averaged concentration defined in (64); the analytic result in (59) (the smooth
sinusoid). The bottom panel compares the cRMS =

√
2Z obtained by solving (60)

analytically with cRMS estimated using (64).

It is clear from (60) that the molecular diffusion, κ, plays an important
role. If κ = 0 then the long time solution of (60) has a component which
eventually grows linearly with time:

κ = 0 , ⇒ Z ∝ t/2Dq2 . (61)
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Thus, without molecular diffusion, there is “runaway variance”. Ultimately,
in a single realization, the mean field in (59) will be buried under enormous
fluctuations.

To give an intuitive derivation of (61) we argue that with κ = 0 the
concentration on each fluid element is determined by solving the Lagrangian
equation

Dc

Dt
= cos qx(t) , (62)

where x(t) is the randomly changing x-position of the particle. Thus, the
concentration on each particle is undergoing a random walk along the c-axis,
which is induced by the random motion of the particle through the cos qx
source function. The decorrelation time of this walk is the time it takes a
particle to diffuse through a distance of order q−1, which is 1/Dq2. Thus, in
a time t, there are roughly N(t) ∼ Dq2t independent steps along the c-axis.
But because the source acts coherently for a time 1/Dq2 with a strength of
order unity, the step length of this random walk is roughly ∆c ∼ 1/Dq2.
Thus, the mean square displacement of c is:

〈c′2〉 ∼ (∆c)2N(t) ∼ t

Dq2
, (63)

which is the final result in (61).
It is interesting to compare the analytic results in (59) and (60) with a

numerical solution of (62). Thus we must compute the spatial averages

c̄(x, t) ≡ 1

L

∫ L

0

c(x, y, t) dy, c2
RMS(x, t) ≡ 1

L

∫ L

0

[c(x, y, t) − c̄]2 dy , (64)

using the numerical solution, and compare these with the analytic results for
〈c〉 and Z = c2

RMS/2. The best way to make this comparison is to obtain
c(x, y, t) on a regular grid in the (x, y)-plane. As a bonus, one can then also
use contouring routines to make pretty pictures of the concentration field
(see figure 9).

The concentration field is calculated on a regular grid using the proce-
dure described in Appendix C (essentially the method of characteristics).
Figure 10 shows good agreement between this simulation and analytic re-
sults. Notice that in figure 10 the variance Z peaks where ∇〈c〉 is greatest.
This illustrates that concentration fluctuations are produced by advective

25



distortion of the mean gradient: where the mean gradient is large there is
lots of variance. But Z �= 0 even where ∇〈c〉 = 0 (for example, at x = 0 and
x = 10π in figure 10). Thus, where the source term on the right hand side
of (60) vanishes, the diffusive term D∇2Z supplies variance.

5.8 Cautionary remarks

In the both examples above there is no molecular diffusion (κ = 0) and
consequently there is no destruction of variance by the term κ〈∇c′ · ∇c′〉 in
(50). As a project for a student, include molecular diffusion in the RW model
(perhaps by pulsing diffusion in alternation with advection) and assess the
efficacy of this process. In particular, can the closure in (52) be justified?

6 Calculation of the RW Green’s function

In this appendix we present an alternative calculation of the RW ensemble
averaged Green’s function, g(r), in (17). The unaveraged Green’s function,
G(x,x0, t), is the solution of (10). Because the process is spatially homoge-
neous it is harmless to take x0 = 0 so that

G(x, 0, τ∗) = δ [x− τ∗s sinϕ] δ [y + τ∗c sinϕ] , (65)

where (s, c) ≡ (sin θ, cos θ). The ensemble average of (65) is computed by
integration over ϕ and θ, as in (4). It is very pleasant that there are two
integrals and two δ-functions. Thus, we first do the ϕ-integral by noting that
δ [x− τ∗s sinϕ] is nonzero at the two values of ϕ where sinϕ = x/τ∗s, and
at those positions:

d

dϕ
[x− τ∗s sinϕ] = ±

√
τ 2
∗ s

2 − x2 . (66)

Using the standard rule for changing variables in a δ-function, we find that
the average of (65) over ϕ alone is

〈G〉ϕ =
1

π

δ(y + cot θx)√
τ 2
∗ sin2 θ − x2

. (67)

The second integral over θ is performed by noting that δ(y+cot θx) is nonzero
at the two values of θ where cot θ = −y/x, and at those positions

sin2 θ =
x2

x2 + y2
,

d

dθ
[y + x cot θ] = −x2 + y2

x
. (68)
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After changing variables in the δ-function we recover g(r) in (17).

7 Eddy diffusion of variance

Ignoring small molecular diffusion (κ = 0), if c satisfies the advection equa-
tion then any function of c satisfies the same equation. That is to say

Dc

Dt
= 0, ⇒ Df

Dt
= 0 , (69)

where f(c) = c2, or exp(c) etcetera. Taking an ensemble average, and making
the same arguments for f(c) as for c, we have that

〈f〉t = D∇2〈f〉 . (70)

In the particular case f = c2/2, 〈f〉 = 〈c〉2/2 + Z and (70) reduces to

Zt = D∇2Z + D∇〈c〉·∇〈c〉 . (71)

Matching the terms in (71) with those in (50) we conclude that 〈u′c′2/2〉 =
−D∇Z.

8 Numerical simulation of the RW process

Drawing figures 9 and 10 requires that we obtain the solution of (62) on a
regular grid in the (x, y)-plane. This is an opportunity to use the method of
characteristics and learn some MATLAB programming techniques.

Equation (3) shows how the movement of a particle in the RW veloc-
ity field is equivalent to a random map which determines the position at
(n + 1)τ∗ in terms of the previous position at nτ∗. If this particle carries
a concentration, c(x, t), which changes because of the cos qx source in (62),
then the concentration changes can also be calculated and expressed as a
map in discrete time.

Thus, suppose that the concentration on a particle at time t = nτ∗ is cn.
Then the change in concentration during nτ∗ < t < (n + 1)τ∗ is obtained by
integrating

Dc

Dt
= cos [qxn + qun(t− nτ∗)] , (72)
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where the x-velocity of the particle is un = sn sin(cnxn + snyn + ϕn), with
(sn, cn) ≡ (sin θn, cos θn) is the constant velocity of the particle. The integral
of (72) can be written as

cn+1 = cn +
sin(qxn+1) − sin(qxn)

qun

. (73)

With equations (73) and (3) we can integrate forward in time and so deter-
mine the concentration on a particle at t = nτ∗.

However we need to determine the concetration at t = nτ∗ at a specified
grid point x. So the trick is to...

%% Solution of

%%

%% Dc/Dt=cos(qx);

%%

%% cos(q x) is a large -scale source and u is the RW velocity.

%% The RW streamfunction is psi=cos[cos(theta) x+ sin(theta)y + phi]

clc

N=400; %% Use an N*N grid in the plotting window

q=1/6; %% The wavenumber of the cos q x source

LL=2*pi/q; %% LL is the domain size

npulse=10 %% The number of renovation cycles

tau=3; %% The pulse duration of the wave

%% Lwin is the side of the square plotting window.

%% Set Lwin=LL to see the big picture. To see small scale details,

%% try Lwin = 2*pi. We draw two subplots with different Lwin’s

nloop=0;

for Lwin=[LL 2*pi]

nloop=nloop+1

x=linspace(0,Lwin,N); %% x is the coordiante in the plotting window.

h=x(2); %% The grid spacing in the plotting window

for j=1:N

jj=[((j-1)*N+1):(j*N)];

pos(jj,1)=zeros(N,1)+(j-1)*h;

pos(jj,2)=x’;
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end

conc=zeros(N*N,1);

%% The position of the N^2 particles are stored in pos with

%% N^2 rows and 2 columns. Each vertical segment of

%% length N in pos contains particles with the same initial x-position.

%% the column vector conc contains the concentration on the

%% N*N particles in pos. Initially, conc=0 at the N*N

%% grid points. Then we integrate

%% backwards in time to find the concentration change.

for k=1:1:npulse

theta=rand*2*pi;

wavevec=[cos(theta),sin(theta)]’;

phase=rand*2*pi;

vel=sin(pos*wavevec+phase)*[wavevec(2),-wavevec(1)];

conc=conc-sin(q*pos(:,1))./(q*vel(:,1));

pos=pos+tau*vel;

conc=conc +sin(q*pos(:,1))./(q*vel(:,1));

end

%% Emerging from this loop, we have the the new positions

%% and the new concentration

conc=reshape(conc,N,N); %% conc is reshaped into an N*N matrix

hh=subplot(1,2,nloop)

colormap(’gray’)

imagesc(x,x,conc)

axis equal

xlabel(’x’)

ylabel(’y’)

axis([0 Lwin 0 Lwin])

set(hh,’ydir’,’norm’)

end
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