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• Hamiltonian dynamics is a very beautiful, and very powerful, 

mathematical formulation of physical systems

– All the important models in GFD are Hamiltonian

• Since it is a general formulation, it provides a framework for 

“meta-theories”, providing traceability between different 

approximate models of a physical system

– e.g. barotropic to quasi-geostrophic to shallow-water to 

hydrostatic primitive equations to compressible equations

– Symmetries and conservation laws are linked by Noether’s 

theorem

• In their pure formulation, Hamiltonian systems are 

conservative; but the Hamiltonian formulation provides a 

framework to understand forced-dissipative systems too

– The nonlinear interactions are generally conservative

– Example: energy budget (APE and Lorenz energy cycle)

– Example: momentum transfer by waves



• Hamilton’s equations for a canonical system:

• For a Newtonian potential system, we get Newton’s second 
law:

�

Conservation of energy follows:

(repeated indices summed)

Symplectic formulation:



• The symplectic formulation of Hamiltonian dynamics can be 

generalized to other J, which have to satisfy certain 

mathematical properties 

• Among these is skew-symmetry, which guarantees energy 

conservation:

• The canonical J is invertible. If J is non-invertible, then 

Casimirs are defined to satisfy

Casimirs are invariants of the dynamics since



• Example of a non-canonical Hamiltonian representation: 

Euler’s equations for a rigid body. The dependent variables 

are the components of angular momentum about principal 

axes, and the total angular momentum is a Casimir invariant.

• Cyclic coordinates: e.g. rotational symmetry implies 

conservation of angular momentum 

• More generally, the link between symmetries and 

conservation laws is provided by Noether’s theorem:
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for a given i



• But

and hence

• Casimir invariants are associated with ‘invisible’ symmetries 

since

• Example: rigid body 

� Barotropic dynamics is a Hamiltonian system

(assuming boundary 

terms vanish)



• Functional derivatives are just the infinite-dimensional analogue 
of partial derivatives; they can reflect non-local properties

• Barotropic dynamics can be written in symplectic form as:

• The Casimir invariants are:

and correspond to Lagrangian conservation of vorticity 

• Symmetry in x and conservation of x-momentum:

Kelvin’s impulse (ignoring 

boundary 

terms)



• Similarly for y-momentum and angular momentum:

• Quasi-geostrophic dynamics is analogous; e.g. for 

continuously stratified flow



• Now in addition to potential vorticity q(x,y,z,t), we need to 

consider potential temperature on horizontal boundaries 

ψ
z
(x,y,t) [and possibly also circulation on sidewalls]

• Note that for the QG model these quantities also evolve 

advectively, like vorticity in barotropic dynamics:

• Analogously, the Casimir invariants and x-momentum are:



• Rotating shallow-water dynamics:



• Disturbance invariants: arguably the most powerful 

application of Hamiltonian geophysical fluid dynamics

• Ambiguities about the energy of a wave=

• Ambiguities about the momentum of a wave=

• If u=U is a steady solution of a Hamiltonian system, then

• For a canonical system, J is invertible so

• Hence the disturbance energy is quadratic

• But for a non-canonical system, this is not true and the 
disturbance energy is generally linear in the disturbance

• Not sign-definite

• Cannot define stability, normal modes, etc.



• Pseudoenergy:

implies for some Casimir C

Thus

is then both conserved and 

quadratic in the disturbance(pseudoenergy)

• Example: Available potential energy (APE) for the 3D 

stratified Boussinesq equations

• Consider disturbances to a resting basic state



• In the last expression, z must be regarded as a function of ρ
0

via                      ; so ρ
0
(z) must be invertible, i.e. monotonic

• Hence the basic state must be stably stratified

• The last two terms in the expression for A can be written

• Small-amplitude approximation

• Such an APE can be constructed for any Hamiltonian system

(positive definite)

(APE of internal 

gravity waves)



• Pseudomomentum: In a similar manner, if a basic state u=U

is independent of x (i.e. is invariant with respect to translation 

in x), then by Noether’s theorem,

implies

which implies for some Casimir C

(pseudomomentum)

• Example: Barotropic flow on the beta-plane

• Consider disturbances to an x-invariant basic state q
0
(y)

implies

is then both conserved and 

quadratic in the disturbance



• This is analogous to the formula for APE, and similarly,

where                      ,  which is negative definite for

• Small-amplitude approximation:

• If q
0

is defined to be the zonal mean, then

and the zonal mean of this expression becomes

• Exactly the same form applies to stratified QG flow, where the 

negative of this quantity is known as the Eliassen-Palm (E-P) 

wave activity

• N.B. The sign of this quantity corresponds to the sign of the 

intrinsic frequency of Rossby waves (negative if                   ) 

q
0
= q, q'= q − q



• Relation to wave action: there is a classical result that under 

slowly varying (WKB), adiabatic conditions, wave action is 

conserved (Bretherton & Garrett 1969 PRSA)

is the wave energy (always positive definite) and       is the 

intrinsic frequency, both measured in the frame of reference 

moving with the mean flow 

• Hence 

• Under WKB conditions, pseudoenergy and pseudomomentum 

are related to wave action via                    respectively

• However pseudoenergy and pseudomomentum are more 

general, and extend beyond WKB conditions

– They require only temporal or zonal symmetry, respectively, 

in the background state

  

∂ ˆ A 

∂t
+∇⋅

r 
c 
g

ˆ A = 0
ˆ A =

ˆ E 

ˆ ω 

where

ˆ E ˆ ω 

sgn( ˆ A ) = sgn( ˆ ω )

ω
ˆ A , k ˆ A 



• Stability theorems: Pseudoenergy and pseudomomentum 

are conserved in time (for conservative dynamics), and are 

quadratic in the disturbance (for small disturbances), so for 

normal-mode disturbances we have

(σ is the real part of the growth rate)

• Then              implies             (normal-mode stability) 

• Therefore these conservation laws can provide sufficient 

conditions for stability/necessary conditions for instability. 

Indeed, many normal-mode stability theorems (e.g. Pedlosky 

1987) result from expressions of the form

where the integral turns out to be just pseudoenergy or 

pseudomomentum (or some combination of the two)



• Example: Charney-Stern theorem. For stratified QG 

dynamics, with horizontal boundaries, the pseudomomentum 

is given by

plus another term with the opposite sign at the top boundary. 

Here Λ=Ψ
z

is proportional to potential temperature.

• Baroclinic instability requires terms of opposite signs so A=0:

Eady model: Interior term vanishes, Λ
y
<0 at bottom, Λ

y
<0 at 

top

Charney model: Q
y
>0 in interior, Λ

y
<0 at bottom

Phillips model: Q
y
<0 in lower levels, Q

y
>0 in upper levels

• Barotropic instability: can be considered a special case



• Other examples of Hamiltonian stability theorems:

– Static stability, centrifugal stability, symmetric stability

– Rayleigh-Kuo theorem, Fjørtoft-Pedlosky theorem

– Arnol’d’s first and second theorems

– Ripa’s theorem (shallow-water dynamics)

• Notable exception: stratified shear flow (Miles-Howard theorem)

• These Hamiltonian stability theorems can, in most cases, be 

generalized to finite-amplitude (Liapunov) stability: i.e. for all ε 

there exists a δ such that

• They can also be used to derive rigorous saturation bounds on 

nonlinear instabilities; e.g. for a statically unstable resting state,



• Example: Bickley jet on barotropic beta-plane 

(Shepherd 1988 JFM)

Supercriticality

Numerical, inviscidTheoretical bound

Numerical, viscous



• Relationship between pseudomomentum and 

momentum: consider the zonally averaged zonal momentum 

equation for the barotropic beta-plane:

• The linearized potential-vorticity equation is

and hence (if           )q
y
≠ 0

whence

(Taylor identity)



• Stratified QG dynamics: zonal-wind tendency equation, 

temperature tendency equation, and thermal-wind balance 

together imply

• So it’s the same physics, but the zonal-wind response to 

mixing of potential vorticity is now spatially non-local (the 

Eliassen balanced response): follows from PV inversion

• The pseudomomentum conservation law takes the local form 

(with S being a source/sink)

• So mean-flow changes require wave transience or non-

conservative effects (non-acceleration theorem)

where



• In the atmosphere, we can generally assume that             since 

q is dominated by β

• Hence A < 0; Rossby waves carry negative pseudomomentum

• Where Rossby waves dissipate, there must be a convergence 

of negative pseudomomentum, hence a negative torque

• Conservation of momentum implies a positive torque in the 

wave source region

q
y
> 0

• This phenomenon is 

seen in laboratory 

rotating-tank experiments

• A prograde jet emerges 

from random stirring, 

surrounded on either side 

by retrograde jets (seen 

in distortion of dye)

(Whitehead 1975 Tellus)



• In the atmosphere, synoptic-scale Rossby waves are generated 

by baroclinic instability, hence within a jet region

• Flux of negative pseudomomentum out of jet corresponds to an 

upgradient flux of momentum into the jet

• f

Vallis (2006)

∂A

∂t
+

∂

∂y
u'v '( )= 0, A < 0



• In fact the wave propagation is up and out (generally 

equatorward), as seen in these ‘baroclinic life cycles’ showing 

baroclinic growth and barotropic decay (Simmons & Hoskins 

1978 JAS)

E-P flux (arrows) and 

divergence (contours)

Edmon, Hoskins & 

McIntyre (1980 JAS)

Haynes & Shepherd 

(1989 QJRMS)

AccelerationDeceleration



• The vertical flux of pseudomomentum is expressed in terms of 

the meridional heat flux

• Reflects thermal-wind balance: poleward heat flux weakens 

the thermal wind, accelerating the flow below and 

decelerating the flow aloft (as in pure baroclinic instability)

• During the wintertime when the stratospheric flow is westerly, 

stationary planetary Rossby waves can propagate into the 

stratosphere where they exert a negative torque, acting to 

weaken the flow from its radiative equilibrium state

• Stationary planetary-wave forcing mechanisms (topography, 

land-sea temperature contrast) are stronger in the Northern 

than in the Southern Hemisphere, hence the stratospheric 

polar vortex is weaker in the Northern Hemisphere

is the Eliassen-Palm (E-P) flux



• Hamiltonian dynamics is applicable to all the important 

models of geophysical fluid dynamics

– Provides a unifying framework between various models

– Systems are infinite-dimensional, and their Eulerian 

representations are generally non-canonical

– To exploit Hamiltonian structure all that is needed is to 

know the conserved quantities of a system

• The most powerful applications are for theories describing 

disturbances to an inhomogeneous basic state

– Non-trivial; e.g., wave energy is generally not conserved

– Useful measures of disturbance magnitude require the use 

of Casimir invariants, following from Lagrangian invariants

– Leads to important concepts of pseudoenergy and 

pseudomomentum: stability theorems immediately follow

– Important applications are available potential energy and 

momentum transfer by waves

Summary
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