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Magnetoconvection
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In lecture 8, we considered how the flow of a conducting fluid affects the magnetic field. Now
we will study how the magnetic field affects the flow. We will extend our linear stability analysis
for rotating convection in a plane layer (lecture 6) by adding a magnetic field. A Lorentz force 
must be added to the Navier Stokes equation and the induction equation must be solved along
with the other equations. 

Inertia                          Coriolis       pressure viscosity mod. gravity Lorentz

Scaling length, time, etc. as in 3.3 and using a characteristic magnetic field strength Bo :
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Chandrasekhar number

magnetic Prandtl number

The Chandrasekhar number is a measure
for the relative importance of Lorentz forces
to viscous forces. The ratio q = Pm/Pr is
sometimes called the Roberts number. We
abbreviate Ch‘ = ChPr/Pm

Symbols (index R - rotating reference frame, I – inertial frame): Ω – rotation frequency, g‘ – modified gravity, U – characteristic
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Magnetoconvection: Linear stability
Solving only the induction equation for a given u is the kinematic dynamo problem. Solving the
full set of equations on 9.1, with boundary conditions for B that imply no external source, is the
magnetohydrodynamic dynamo problem (if boundary conditions for u imply no external driving
of the flow, it is a convection-driven dynamo). If we solve the full set of equations with a 
magnetic field B imposed by boundary conditions, this is the magnetoconvection problem. 

Consider a plane rotating layer of a conducting fluid with an 
imposed temperature contrast and an imposed magnetic field Bo. 
The rotation, gravity and magnetic field vector are all parallel in z-
direction. Consider the stability of the trivial solution T=1-z, u=0, 
B=Boez by studying the growth or decay of small perturbations. 
The magnetic field in the fluid is B=Boez+b(x,y,z), with b the
perturbation, which we represent by poloidal and toroidal vector
potentials b = ∇×(∇×gez) +∇×hez. Linearized equations (compare 
9.6) with the Lorentz term added:
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We use (as in case of the velocity)  bz=-∆2g and jz=-∆2h to represent the poloidal and 
toroidal parts of the induced field. Note that the imposed field Bo itself is force-free and the
interaction of the currents of the induced field with Bo gives rise to Lorentz forces.

Symbols: Bo – imposed field, b – induced field (perturbation), g,h – poloidal / toroidal magnetic potentials
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Magnetoconvection: Linear stability
We need two more equations for bz and jz, which we obtain from the linearized induction
equation:  ∂b/∂t = ∇×(u×ez) + Pr/Pm ∇2b or ∂b/∂t = ∂u/∂z + Pr/Pm ∇2b. The z-component of 
this equation and the z-component of the curl of this equation gives:

Boundary conditions: jz=0 at z=0,1. bz and ∂bz/∂z must fit continously at z=0,1 to an external
continuation of the field that satisfies ∇2bz=0 and decays with distance from the layer. 
Expanding bz and jz into normal modes (compare 6.5):
bz(x,y,z) = Hklm exp(ikxx+ikyy+σt) [cos(mπz)  +  e-K/2 sinh(K(z-1/2))] 
jz(x,y,z) =   Jklm exp(ikxx+ikyy+σt) sin(mπz)
The function for the z-dependence of bz is more complex, in order to satisfy the non-local
boundary condition. The part with the sinh-term satisfies ∇2bz=0 inside the layer. Insert into
the linearized induction equations for the critical state (σ=0):
0 = π W – Pr/Pm (K2+π2) H     ⇒ H = W Pr/Pm π/(K2+π2)
0 = -π Z – Pr/Pm (K2+π2) J      ⇒ J =   Z Pr/Pm π/(K2+π2)
The poloidal flow induces a poloidal magnetic field and the toroidal flow induces a toroidal 
magnetic field. At the critical state, the magnetic field components are a simple linear 
functions of the respective flow components.
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Symbols: H – ampitude of poloidal magnetic modes, J –amplitude of toroidal magnetic modes



Christensen: Fluid dynamics of Earth and Planetary Interiors, Kyoto, November 2006 9.4

Magnetoconvection without rotation
. Set E→∞. There is no source term in the equation for ζ on 9.2 because jz is directly

related to ζ ⇒ no toroidal flow and no toroidal magnetic field are created. Insert the
expression for H (9.3) to eliminate H in the modal form of the equation for w (9.2) [the
dependence on Pr/Pm drops out and Ch‘ is replaced by Ch). Calculate the critical
Rayleigh number as in lectures 3 and 6 (for m=1):   
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Finding the minimum of Rac with respect to K gives finally Racrit.  The relevant limit is Ch
>> 1 (Lorentz forces much stronger than viscous forces). In this case, we obtain: 

Racrit = π2 Ch Kcrit = (Ch π4/2)1/6    ≈ 1.9 Ch1/6   

1) Similarly as rotation, the presence of a magnetic field parallel to g inhibits
convection. This can be observed at sunspots, which are strong magnetic flux tubes
penetrating through the solar surface. The suppression of convective heat transport
makes them cooler and  darker.

2) In laboratory experiment Ch ≈ 105 and th the Earth‘s core Ch ≈ 1013.
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Discussion of linear stability results
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Experiments with liquid mercury confirm the
theoretical dependence of the wavenumber
(aspect ratio a) on Ch.

3)     The condition of criticality can be written as  
Ra Ch-1 > π2, or in terms of physical 
parameters:

Viscosity drops out and is replaced by Bo as 
factor inhibiting convection. Ch/π2

a 
(c

m
)

4) We estimate the relative amount of viscous dissipation of energy, Dν = ρν u·∇2u and 
ohmic dissipation  Dλ = 1/(µoλ) j·j = 1/(µo

2λ) (∇×b)2 .
u ~ κW/D, ∇2u ~ κ KW/D3  ,          Dν ~ ρνκ2 K2W2/D4

∇×b ~ BoKH/D ~ BoλW/(κKD),      Dλ ~ Ch ρνκ2 K-2W2/D4

The ratio is Dλ/Dν ~ Ch K-4 and with Kcrit ~ Ch1/6:         ⇒ Dλ/Dν ~ Ch1/3

At large Ch, the dissipation of energy is almost entirely ohmic. The additional sink of 
energy can be considered as reason for the inhibiting influence of Bo.

5) When Bo ┴ g, convection occurs in the form of rolls aligned with the direction of B. No 
currents are induced and the critical Rayleigh number is not affected by B. 
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Magnetoconvection with rotation
. Assume finite E and Ch. The full set of equations in 9.2 must be considered in modal 

form. The magnetic field can be eliminated by using the relations to the velocity modes
given in 9.3.  
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This equation combines the contributions from the simple Bénard problem (viscosity), 
rotation, and magnetic field. However, the second term related to rotation is
multiplied by a „correction factor“ depending on the magnetic field. It stems from the
effects of the toroidal magnetic field jz that is generated by the toroidal flow which is
excited by the action of the Coriolis force.
The product Λ = Ch E   is given a special name.

Ω
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oB2

Elsasser number ~  Lorentz / Coriolis force

At E << 1 and Ch >> 1, the function Rac(K) has two minima. Which is the absolute 
mimimum, and therefore provides Racrit, depends on Λ.
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Magnetoconvection with rotation: results

E = 10-6

Λ=0

Λ=10-2

Λ=3

For sufficiently large 
Λ the solution jumps
from large K (narrow
cells) to small K. For 
E→0 the optimum
value is Λ=121/2 ≈3.5 
⇒ Kcrit=21/2π (a≈0.7) 
and Racrit ≈103 E-1. 
Compare to variation
~E-4/3 without
magnetic field. The
reduction of Racrit at 
the optimum value of 
Λ is by a factor 20 at 
E=10-6 and by a 
factor 20,000 at 
E=10-15.  
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Critical Rayleigh number and critical
wavenumber as function of Λ for various
values of E

Rac as function of K for
different values of Λ at 
E=10-6.
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Comparison rotation/magnetic convection

E = 10-4 Ch=0                         E=∞ Ch=104                                E=10-4 Ch=104 (Λ=1)
Convection with rotation and/or magnetic field at slightly supercritical Rayleigh number. Two isosurfaces
of temperature and the path of a particle moving with the flow are shown.

Rotation alone and magnetic field alone impede convection. 
Paradoxically, the addition of a magnetic field in case of rapid 
rotation, such that Lorentz force ≈ Coriolis force (Λ=O(1)), favors
convection. The width of the convection cells increases from
O(E1/3) to O(1) and the critical Rayleigh number is reduced by a 
factor E-1/3.
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Force balance in magnetorotational convection

flowing inside the upper vortex and outside the lower vortex (closing by a vertical current jz). 
The associated Lorentz force  j x Bo is opposed to Coriolis force and for Λ~O(1) almost
cancels it. Therefore vT ≈ W even for small K, which implies much less viscous dissipation.

Why does the addition of the magnetic field help
rotational convection?
Consider an upwelling plume (flow lines in black). 
The plume flow converges at the bottom and 
diverges at the top and the action of the Coriolis  
force (pink arrow) deflects it to the right, creating
the toroidal vortices (in blue). Without magnetic
force, the toroidal flow is vT~Z/K≈2πE-1K-3 W (6.5) 
and for small K≈π and E<<1  vT>>W. The toroidal 
flow transports no heat, but only dissipates energy
(Dν ~ vTK2 ~ E-1K-1W). To reduce Dν, then flow
must assume a large K (until dissipation by the
poloidal flow ~WK2 becomes comparable).
When a magnetic field is present, the toroidal flow
induces an electric current (in green) j ~ vT x Bo, 
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In the presence of a magnetic field, Lorentz forces can replace viscous
forces to „beat“ the Proudman-Taylor theorem.
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Magnetoconvection and dynamos
1) The magnetic field has a similar effect also for other orientations between Bo, Ω and g.
2) The magnetic field has a similar effect in case of spherical shell convection.
3) The poloidal magnetic field at the surface of the core is ≈ 0.4 mT. Inside the core we

can estimate that it is 3-10 times stronger (some even assume very strong toroidal 
fields up to 50 mT), which implies Λ ≈ 1 – 10  (1000). One possible reason why the
Earth‘s magnetic field has a strength corresponding to Λ=O(1) is that convection is most
efficient in this case.

Ra

u
B

Ra0 Racrit Ra1

weak field
branch

strong field
branch4)   The dynamo onset in rapidly rotating con-

vection of a conductor may be complex: At 
Racrit convection starts, but u is too slow (Rm 
too small) to generate a magnetic field. At Ra1
the dynamo starts to generate a weak field
(Λ<<1). At some point B becomes strong
enough to affect the flow (liberating it from the
P-T-constraint) and runaway growth of B and 
u occur until Λ≈1 is reached.
When initially a strong field is present, the dynamo starts at Rao < Racrit (subcritical
onset). Subcritical dynamos have been found numerically in plane-layer geometry, but
not so far in a sphere. It remains an open question to what extent magnetoconvection
results (with homogeneous B) can be applied to dynamos (with a complex B). 
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