
Fundamentals of magnetohydrodynamics
Consider an electrically conducting fluid with conductivity σ, moving with a (local) velocity
v << c, for which ε=εo, µ=µo.

Equations in the MHD approximation: Estimate relative magnitude of various terms.
The ratio of typical length scale L to typical time scale T of the system V = L/T << c. From
Faraday‘s law we obtain E/L ~ B/T  ⇒ E ~ VB. Using this, the last term in Maxwell‘s law
is of order VB/(c2T) and the first term of order B/L  ⇒ their ratio is V2/c2 << 1 and the last 
term (displacement current ) can be neglected. Similarly it can be shown that B‘ ≈ B. The
electrical current in a moving conductor is obtained as    j = σE‘ + vξ. The scaling analysis
shows again that the last term relative to the first is of order vV/c2, hence negligible.
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Maxwell‘s law (Ampère‘s law)

Faraday‘s law

Transformation rules into moving
reference frame (valid for v << c)

Ohm‘s law for fluid at rest
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Symbols: σ – elctrical conductivity, µ – magnetic permeability, ε – dielectric constant, c=(µoεo)-1/2 – speed of light, B –
magnetic induction („magnetic field“), E – electric field, j – current density, ξ – electric charge density



Induction equation
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o MHD-equations (pre-Maxwell equa-
tions and generalized Ohm‘s law.

Eliminate j, introduce magnetic diffusivity λ=(µσ)-1, take curl:   ∇×(λ∇×B) = ∇×E + ∇×(v×B).
Eliminate E. For ∇·B=0  ⇒ ∇×∇×B = -∇2B,  so for λ=const:
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For  ∇·v = 0

Advection Induction Diffusion

For a given velocity field (magnetokinematics) and initial condition and boundary conditions
for B, the evolution for B can be calculated.  The search of velocity fields that lead to 
solutions with non-decaying B is subject of the kinematic dynamo theory.  
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Symbols: λ – magnetic diffusivity



Induction equation
Scale magnetic field and velocity by characteristic values Bo, U, length by D, and time by
D/U. The equation in terms of dimensionless variables is
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1) For small Rm diffusion dominates, for large Rm advection and induction dominate. Working
dynamos require Rm>10 at least.

2) Because ∇·B=0, the magnetic field can be decomposed in toroidal and poloidal parts.  In a 
sphere, the toroidal field has no radial component and the poloidal field has no associated 
radial current (jr ~ [∇×B]r). The toroidal field cannot be observed outside the sphere.

3) If the region outside the sphere is insulating, ∇×B = 0, ∇·B = 0, ∇2B = 0. The exterior field
is poloidal and can be represented as gradient B= -∇Φ. Appropriate boundary condition at 
the surface of the sphere is a matching condition of the internal field to a potential external
field that decays with radius if there are no external sources to the field. Φ is expanded in 
spherical harmonic functions.
(n=1 dipole, n=2 quadrupole)

An equivalent decomposition in spherical harmonic functions can be made for the toroidal 
and poloidal vector potentials of the field inside the sphere, but with arbitrary radial 
functions Πnm(r), Θnm(r).
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Symbols: Rm – magnetic Reynolds number, Φ –scalar magnetic potential, a – reference (Earth) radius, g m, h m – Gaussn n

coefficients, Pn
m – associate Legendre functions, n – harmonic degree, m - harmonic order, Π,Θ – vector magnetic potent 
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Decay modes /  Alfvén‘s theorem
At low Rm << 1 we can neglect the induction/advection term:   ∂B/∂t = λ∇2B.   Without
external sources, any field will decay. Scaling analysis tells that the basic time scale for
this is D2/λ. In a sphere exponential decay is found for particular field configurations
called free decay modes. The slowest decay occurs for a certain dipolar poloidal field, 
with decay time of τ=R2/(π2λ). Earth‘s core λ ≈ 1 m2/s, R=3,480 km ⇒ τ ≈ 40,000 yr.

At very large Rm >> 1, we neglect the diffusion term:  ∂B/∂t+(v·∇)B = (B·∇)v. The term 
on the left side is the change of B in a Lagrangian reference frame,  DB/Dt = (B·∇)v .  

dℓConsider a line connecting particles of the moving fluid. dℓ is a vector along this 
line connecting two close particles). When v is the velocity at the starting point, 
that at the end-point is v+(dℓ·∇)v. Therefore the change of the (moving) vector 
is  Dℓ/Dt = (ℓ·∇)v. This equation is formally identical to that governing B. A 
magnetic field line will pass through the same fluid particles at all times. 

Alfvén‘s theorem:  When diffusion is negligible, the magnetic field is „frozen“ into the fluid.

S‘

S

BConsider a closed material line S’ that moves with the flow. Magnetic field lines 
that pass through the surface S bounded by S’ will pass through this surface at 
all times. In particular, the magnetic flux  ∫ B·dS through this (moving and 
deforming) surface will remain the same at all times.
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Magnetic flux is „frozen“ into a material surface.

Symbols: D/Dt = ∂/∂t+v·∇ - Lagrangian time derivative, dℓ – line element



Field line stretching
For negligible diffusion  DB/Dt = (B·∇)v. If a material line 
(magnetic field line) is elongated by the flow, the 
magnetic field strength will increase. Consider a cylinder 
penetrated by a bundle of magnetic field lines, that is 
stretched from length ℓ1 to ℓ2. Volume V is conserved ⇒
surface S=πD2 ~ ℓ-1. From flux conservation B·S=const it 
follows  B ~ ℓ.  The magnetic energy in the cylinder     
Emag = B2V/(2µo) increases. In order to increase energy, 
work must be done against Lorentz forces FL = j × B.

Stretching the fluid along field lines generates magnetic energy by doing work against
Lorentz forces.
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In a shear flow, the magnetic field vector
is rotated and intensified. Differential 
rotation in a sphere is a special type of  
shear flow that generates axisymmetric 
toroidal field from an axial poloidal field. 
This is called the ω-effect.
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Flow at the top of the Earth‘s core
At the top of Earth‘s core (more precisely below the
Ekman layer at the top of the „free stream“) the flow
is purely horizontal. Neglecting diffusion and 
considering the radial component of the induction
equation we obtain (for ∇·u=0) after some 
transformation:

∂Br/∂t  =  ∇h · (Bruh)
The magnetic field observed  at the Earth’s surface 
can be downward continued to the top of the core, 
assuming that there are no sources of the field in 
the crust and mantle and using the expansion in 
spherical harmonics. Doing this at different times, 
we know both Br and ∂Br/∂t at the CMB. The task is 
to invert the equation and solve for uh. Because we 
have two unknown components of uh, but only one 
equation, additional assumptions are needed.
Several have been employed:   (1) Tangentially geostrophic flow, i.e. uh is controlled by a 
balance of pressure and Coriolis force  ∇h·(cosθ uh) = 0.  (2) Purely toroidal flow ∇h·uh = 0. 
A smoothness assumption is made (flow complexity is penalized in the inversion).  

1990 Br
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Symbols: index h refers to the horizontal part



Flow at the top of the Earth‘s core

1890 1990

20 km/yr

Example for a core-flow
inversion. Robust 
results, independent of 
assumptions, are a 
typical flow magnitude
≈ 15 km/yr = 0.5 mm/s,
westward flow in the
tropical Atlantic and a 
vortex motion in the
Indian ocean.

With this velocity estimate, the magnetic Reynolds number of the core is Rm = UD/λ ≈ 1000.
This is comfortably high for a dynamo, but not so high that it would not allow direct numerical
simulation of the induction process.
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Test of core flow inversion I

Several assumptions of uncertain
validity enter into the core flow
inversion, in particular the frozen-flux
assumptions (negligible diffusion). 
How reliable is the inversion?

Tests using the numerical dynamo
models suggest that the velocity is in 
the right order of magnitude and the
flow pattern is matched in some
regions but not in others.

Original velocity field of numerical dynamo model

Velocity obtained by inverting Br and ∂Br/∂t of the model
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Test of core flow inversion II
If the flow in the core changes with time, this may imply changes in the total angular
momentum of the core. Since the angular momentum of the Earth as a whole must be
conserved, a change in the core must be balanced by an opposite change of the mantle
and crust contribution. At the Earth‘s surface this will be observed as a change of the
rotation rate, or the length of the day (LOD). On time-scales of decades, LOD-changes
of several msec are observed, for which no other explanation than angular momentum
exchange with the core is viable.

observed

Assume that the zonal (φ-independent) and 
equatorially symmetric components of uφ
obtained in a core-flow inversion represents
(differential) flow on geostrophic cylinders
cutting through the fluid core (no other flow
components contribute to the angular
momentum). The angular momentum

change can be calculated
from core-flow models at 
different epochs. The
agreement with the observed
LOD changes since 1900 is
suprisingly good.
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