
Convection in rotating spherical shells
Consider a rotating spherical shell with inner radius ri and 
outer radius ro. The ratio ri/ro is 0.35 for the Earth‘s core, 
≈0.85 for Jupiter‘s and ≈0.5 for Saturn‘s molecular H2 layer.
We use spherical coordinates (r,θ,φ) and sometimes
cylindrical coordinates (z,s,φ).  In contrast to the plane layer
case, the direction between the radial gravity vector g=-ger
and the cylindrical rotation Ω=Ωez differs in different parts of 
the shell: near the poles the two vectors are nearly parallel 
and in the equatorial plane they are perpendicular.
The inner core tangent cylinder separates three
dynamically distinct regions of the shell. Because of the
rigidity of the flow in z-direction imposed by the Proudman-
Taylor constraint, consider columns of fluid aligned with the
z-direction. Columns outside the tangent cylinder end at two
points on the outer boundary, those inside the tangent
cylinder region stretch between outer and inner boundary.  

tangent
cylinder

ro

ri

For a fluid shell heated from below (e.g. by an imposed ∆T between inner and outer
boundary) or from within, we define the Rayleigh number and the Ekman number as 
before, using the shell thickness D=ro-ri as the basic length scale.
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Symbols: ri – inner shell radius, ro – outer radius, D=ro-ri - shell thickness



Onset of convection in a sphere
As in car

expanded in spherical harmonic functions in the
θ,φ-coordinates (which are eigenfunctions of the
horizontal part of the Laplacian operator). For 
finite E, a separation of variables (r,θ) is not
possible and even the solution of the linear 
stability problem requires numerical techniques. 
We will qualitatively consider the solution of the
marginal stability problem and rationalize it with
what we learned from the cartesian problem. We
consider again the relevant case E<<1.

Convection starts in the form of columns outside
the tangent cylinder parallel to the rotation axis. 
The basic flow is a vortex motion around the axis
of the column, There is some analogy to the
cartesian case with g ⊥ Ω: the flow is such as to 
satisfies the P-T-theorem as far as possible.  

tesian geometry, incompressible flow in a sphere can be represented by poloidal
and toroidal components (where r instead of z relevant direction, e.g. the toroidal flow has 
no r-component). In the case E→∞ the solution to the linearized problem can be

The solution must be periodic in φ and can be written as   f(r,θ)exp(i[mφ-ωt]).

Christensen: Fluid dynamics of Earth and Planetary Interiors, Kyoto, November 2006 7.2



Onset of convection in a sphere II
The Proudman-Taylor theorem cannot be satisfied
precisely, because the velocity in the columns must
adapt to the sloping boundaries at both ends. This
involves for example a velocity component uz that must
change with z. Because the slope becomes larger with
distance from the rotation axis, the columns tend to 
cluster around the inner core as close as possible to the
rotation axis, i.e. near the tangent cylinder boundary.
Because the Proudman-Taylor theorem must be
violated, which requires that viscous friction balances
the Coriolis force and the flow length scale must
become small to achieve this effect, the same strong
dependence on the Ekman number applies as in the
plane layer case:

Racrit ~   E- 4/3 mcrit ~  E-1/3

z

At very low E, the number of columns is very large, e.g. 
m=105 for E=10-15. They become thinner than spaghetti. 
ω≠0 for finite values of Pr  ⇒ the columns drift in 
longitude at constant rate.
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Convection in a rotating sphere
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Numerical calculation at E=10-5, Pr=1, Ra=1.5 Racrit

φ
z

T [∇×u]z

Consider cross sections through the columns ⇒ they are elongated and 
their long axis is tilted with respect to the s-direction. The cause for the tilt is
the curvature of the boundary at which the column ends.
In addition to vortex motion, there is flow along the column axis, diverging
away from the equatorial plane in anticyclonic columns and converging in 
cyclonic ones. At higher Ra this flow can become comparable in magnitude
with the vortex motion. It makes the flow helical, with negative helocity in the
northern hemisphere and positive in the southern. Effects that give rise to 
this motion are (1) Ekman pumping (for rigid boundaries), (2) concentration
of temperature anomaly in equatorial plane, (3) boundary curvature.



Zonal flow excited by convection

Numerical calculation at E=10-5, Pr=1, Ra = 45 RacritZonal flow in geostrophic cylinders

T       Uφ

[∇×u]z

At low Ekman number and high Rayleigh number
- convection fills the entire spherical shell including the tangent cylinder
- the perfect columnar structure is broken up, but preferred orientation parallel to z
- a strong zonal flow (i.e. a mean flow in φ-direction) Uφ(s,z) = <uφ>φ is excited
- the zonal flow is geostrophic (independent of z  ⇒ no violation of P-T--theorem) and 

prograde (eastward) at large s and retrograde (westward) at smaller s
- with free-slip boundaries the zonal flow can be much stronger than convection
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Symbols  (notation:  <   >φ - average over φ)     Uφ – mean flow in φ-direction



Zonal flow excited by convection II 

Laboratory convection rotating sphere
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Ratio of total kinetic energy to the energy of the non-zonal
(convective) part of the flow in numerical simulations of 
convection in a spherical shell with free-slip boundaries
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Relaxation oscillations at low Ekman 
number and moderate Ra ≈ 5 – 10 Racrit
Short pulses of vigorous convection
transfer energy into the zonal flow.  The
shear of the zonal flow suppresses
convection and the zonal flow loses 
energy until the next convective burst
can occur.



Reynolds stress and zonal flow
For simplicity, assume two dimensional flow u(s,z).
Separate into large-scale (here: zonal) and small-
scale part:     u = Uφ(s)eφ + u‘(s,φ) Insert into
Navier-Stokes equation and take average in φ-
direction of its φ-component (note that <u‘>φ=0):

∂Uφ/∂t  +  ∂<u‘su‘φ>/∂s = E∇2Uφ

The term involving tsφ = <u‘su‘φ>φ arises from the
u·∇u -term in the N-S-equation. Formally tsφ can be
considered as a component of an external stress 
tensor acting on the large-scale flow. 

u‘s
u‘φ

Similar considerations can be made for general (3D) flows. The resulting stress tensor is
called Reynolds stress. In turbulent boundary layers, the Reynolds stress adds to the
retarding viscous stress and transfers energy from the large-scale flow to small scales
(turbulent cascade), where it is destroyed by friction. In our case, the systematic tilt of the
convective elements leads to positive correlation of u‘s and u‘φ. The Reynolds stress 
transports (angular) momentum in +s-direction, adding to the zonal flow. It transfers energy
from the small scales to the large-scale flow (inverse cascade). The Reynolds stress does
not need to be very large, but since only the weak (at low E) large-scale viscous stress 
counteracts the (fully geostrophic) zonal flow, it can accumulate much energy with time.  

Uφ
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Application to the gas planets

tangent

Uφ observed Uφ model

cylinder
boundary

Convection model for Jupiter (Heimpel et al., 2005) with a thin convecting shell (ri/ro=0.85). 
Colors in c) show uφ. On the surface Uφ has the right magnitude with strong prograde flow
near the equator and alternating bands of weaker zonal at higher latitude (inside the
tangent cylinder). The Boussinesq model does not explain the observed asymmetries and 
ignores the strong density variations with radius. Nonetheless it supports the hypothesis of 
an internal origin of the zonal jet flow at the surface of the gas planets.  
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