Convection in rotating systems

Consider rotating frame of reference with rotation vector Q=Qe, (s is coordinate L e,). Two
(pseudo-)force terms (Coriolis and centrifugal) are added to Navier-Stokes equation: Dug/Dt
= Du/dt + 2Q e, x ug + Q?se,. Centrifugal acceleration = gradient of a potential, can be
added to gravitational potential = modified gravity vector g = g — Q?se (drop prime later).

Z
Q
p({;_ltl+u-Vu)+2erzxu +Vp =7 Vu+ pg Q/vs

Inertia Coriolis pressure viscosity mod. gravity

To estimate relative size of terms, scale velocity by U, length by D
and time by D/U, to obtain non-dimensional equation (gravity omitted):

U V
QD QD

Rossby number Ekman number

RO(Z—?+U-VU)+2eru+Vp = E V'u RO

Earth‘s core: Q=7.6x10°s", U=0.5 mm/s, D =2000 km, v=2x10m?/s = Ro=3x10% E =104

Jupiter‘s outer shell: Q =1.7%x104s1, U=100 m/s, D =104 km, v=10°"m?/s = Ro=0.05 E =105

Symbols (index R - rotating reference frame, | — inertial frame): Q — rotation frequency, g‘ — modified gravity, U — characteristic
velocity, D — characteristic length (e.g. layer height), Ro — Rossby number, E — Ekman number

Christensen: Fluid dynamics of Earth and Planetary Interiors, Kyoto, November 2006 6.1




Proudman-Taylor theorem

When both E << 1 and Ro << 1, the dominant force balance
is between pressure gradient and Coriolis force (geostro-
phic balance): 2e,xu = Vp. Take curl, use rule Vx(axb) =
(b-V)a-(a'V)b + a V-b — b V-a, to obtain for V-u=0

M_o (ikewise P — 0
0z 0z

Rotating cylinder Obstacle
Proudman-Taylor theorem: flow does not change

in the direction of the rotation axis

Flow

Bands of
dye above
obstacle

 If the fluid is bounded by impenetrable walls in z-direction
= u, = 0 everywhere.

« 2D-streamlines follow isobaric lines (p=const) and
lul ~|Vp| (geostrophic flow)

» In practice, the Proudman-Taylor theorem is often not
satisfied perfectly, but the fluid has a ,dynamical stiffness®
along to the rotation axis gk
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Ekman boundary layer

At no-slip boundaries u must drop to zero. If they are not parallel to e,, the

o

P-T-theorem cannot be satisfied near the boundary. In order to violate it,

some other force term must be of the same order as the Coriolis/pressure 4
term. Even for a small value of E, the viscous term becomes large if the 3
velocity changes on a small length scale N ,
o ~E"2 in dimensional units: o =D E"2= (v/Q)"2, 1
0 is the Ekman layer thickness. For a geostrophic flow u = (u,v,w) = 0

0 0.2 0.4 0.6 0.8 1
(U,0,0) far away from the boundary, the solution to the Navier-Stokes uiu, viu

equation near the boundary is:
u=U (1-exp(-z/d)) cos(z/d) v = U exp(-z/d) sin(z/d)
Near the rigid boundary, the flow forms a 45° angle to the geostrophic flow.

When the geostrophic flow forms a vortex that rotates in the same sense
as the basic rotation (associated with low pressure), there is a net flow
towards the center of the vortex in the Ekman layer (Ekman suction or
Ekman pumping). There must be a vertical flow away from the boundary.

The opposite occurs for an anticyclonic vortex. —

In the Earth’s core the Ekman layer thickness is © = 0.2 m. If the flow ge_(_)_s_t_r_(_)ﬁt}_l_c_ flow

becomes turbulent, the boundary can become much thicker. flow in Ekman layer

Symbols: & — Ekman layer thickness, u,v,w — cartesian velocity components, U — geostrophic flow velocity
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Rotating convection: poloidal / toroidal decomposition

Assume that gravity is parallel to rotation axis: g = -g e,. U not known a-priori - take D?/k as
basic time scale (as before). Assume free-slip boundaries and T(z=0)=1, T(z=1)=0. This
time do not make the assumption of 2D-flow.

Pi(aa—ltlJru-Vu)+éezxu +Vp = Vu+ RaTe, V-u=0
r

£+u-VT =V°'T

ot

Represent velocity by poloidal potential @ and toroidal potential W (satisfies V-u=0 implicitly):
u = Vx[vx®e,] + VxWe, (u,v,w) = (8XZ(D+3yLIJ, 8yZ(D—3XLP, A, D) where A2:=8XX+8yy

The toroidal part of the flow u,,, has no z-component and Vxup, has no radial component.
Linearize the Navier-Stokes equation and take (1) the curl of the equation and (2) the curl of
the curl and consider the z-component in both cases:

1 0 2 0 1 0 2 0

——AY = VAY+=—AD ——V?’A,® = VA ®-RaAT-=—A,¥
Pr ot E oz Pr ot E oz

Two scalar equations. Without the Coriolis term (i.e. for E—«~) the two equations decouple.

Symbols: (Notation: 9,:=d/dx, A,=0,,+d,,) V- toroidal vector potential, ® — poloidal potential
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Rotating convection: Linear stability

Setw=-A0; (=-AWY=(Vxu),; T=(1-z)+86. Linearize temperature equation:
ng“ = V¢ +£iw; L 9w viws RaAze—ga—g; % WiV
Pr ot E oz Pr ot E oz ot

Isothermal, impenetrable free-slip boundaries: w=9,,w=9,(=06=0 at z=0, z=1.
Expansion in normal modes: B(x,y,z) = Oy exp(ikxtik y+ot) sin(mmz)

Satisfies boundary conditions. wW(X,y,z) = Wy, exp(ikx+ik y+at) sin(mmz)

m>0 integer. k,, k, real, o complex. C(xy,z) = Zymexp(ikx+ik y+ot) cos(mmz)

For E—«~ we recover the Rayleigh-Benard case, where (=0. At the critical onset of convection,
real(0)=0. General case: o=iw, consider here only case 0=0. Set K? = k,2+k 2.

E K*+m’z? 2
— i L =W; (K2+m2722)®:W; —myzZ+(K2+m27z2)2W:RaK2®
2 mrz E

Replace Z and © in 3rd equation by W. Divide by W to obtain critical Rayleigh number:

(K*+m*z%) 4 m’z’
K? i E? K?

Ra. (K,m) =

Symbols: w — vertical velocity, { — z-component of vorticity, 6 — temperature perturbation, k,,k, — wave number
components, K=|k|, o — growth rate.

6.5
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Rotating convection: Linear stability I

Search minimum of Ra (K,m) (obviously at m=1): apply K#*d/d(K?) and set to zero:
3(K2+12)2 K2 - (K2+172)3 — 4E2112 =0

The critical wavenumber is found as root of 3rd-order equation in K2. Consider here only
asymptotic case E << 1. The 3rd term is very large, so K_;; must be large and only the
leading power in K needs to be retained, 2K® = 4E-2 112, Insert K_;, into expression for Ra,,
keeping again only the leading power:

Ra,, = 3(2m)23 E43 =~ 21.9 E43 K, = (2m2)V6 E13 = 1.64E-13

1)  Atlow Ekman number, the critical Rayleigh number is very large. The wavenumber
becomes large and the aspect ratio of a convection cell, a=11/K_;;, becomes small.

E >>1 (Benard convection): Ra. = 657.5 a=1414
E =10° (lab experiments): Ra.; = 2x10° a=0.020
E = 10" (core, gas planets) Ra.; = 2x10? a=4x10"°

Rotational forces strongly inhibit convection. Why is this so?
= Because the flow must violate the Proudman-Taylor theorem !

Symbols: a — aspect ratio of convection cell.
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Discussion of linear stability results Il

2) If Ra. is so high in the Earth's core, can it convect at all ? Calculate critical AT,
assuming appropriate values of other properties in the Rayleigh number (v=2x105,
k=5x10%, a=10-°, g=7, D=2.3x108 in Sl units):

AT = 2x10%" xv/(agD3) = 3x10° K' = very small AT enough for supercriticality.

3) The condition of criticality can be written as Ra E*3 > 22, or in terms of physical

parameters:
a g AT D1/3 V1/3

4/3

> 21.9
K Q)

. unnamed non-dimensional number on left side

. layer thickness D has now only a small influence on the onset of convection

. increasing Q impedes onset of convection

. increasing v favors convection (paradox). Why ? Viscous friction allows for

deviation from the Proudman-Taylor theorem. This is also the reason for the
small aspect ratio, since the frictional termis vV2u ~ vU/a?

. an inviscid fluid, v—0, is stable for any temperature contrast
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Discussion of linear stability results Il

4) As in Benard convection, the 3-D pattern is not determined by the linear stability
analysis (different k,, k, that result in the same K give the same result). 2D solutions
(e.g. k,=0) are possible, but for finite E the velocity is not zero in y-direction.

5) When Kiis large the ratio between Z and Wis Z = 2m/E K2 W. The toroidal velocity
u' relates to { by {=[Vxu'],. The amplitude of the toroidal flow VT in a modal
representation is VT = Z/K, therefore VT =2m/EK3W =212W  at K=K_.

At low E, toroidal and poloidal velocities have similar amplitude. The toroidal
flow changes sign at mid-depth (z=1/2) and rotates, in rising flow (w>0) in the same
sense as the basic rotation for z<1/2 and opposite for z>1/2. The figure shows the
path of a fluid particle moving in a hexagonal convection cell. ‘-f’n

6) The product H=u - (Vxu)is called helicity. The T
convective flow at low E is very helical, with helicity
changing sign at mid-depth. Helicity plays an important
role for the dynamo process in a conducting fluid.

7)  When we restrict the analysis to real values of o, the result
is independent of the Prandtl number. A more complete
analysis shows that indeed Im(o)=0 at Prandtl number Pr
> 0.68. At Pr < 0.68, oscillating solutions are preferred at
onset of convection (o=iw), which can have a lower (but
for E<<1 still very large) critical Rayleigh number.

Symbols: VT — toroidal velocity amplitude, H — helicity. .
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Discussion of linear stability results IV

8) What changes when rotation and gravity vector or not parallel ? Assume g = -ge,
and Q =Q (sinf3 e, + cosP e,).

In the case B=0° the preferred flow consists of 2D-rolls aligned with the y-direction.
This flow is not in conflict with the Proudman-Taylor theorem. At onset of convection
the flow is identical to that of the Rayleigh-Benard case and has the same critical
Rayleigh number (657.5) and critical aspect ratio (2'2). The only differences to the
case without rotation are that now the pattern (rolls) and their alignment are
constrained and that a strong pressure gradient between the center of the roll and its
margins balances the Coriolis force (purely geostrophic convection possible).

When B > 0° rolls aligned with the y-direction are still preferred. Assuming this
particular flow pattern, the terms describing the effect of the Coriolis force on slide
6.5 now take the form 2E-'sinf d/dz, which can be expressed by an effective Ekman
number E’ = E/sinp and the critical Rayleigh number and critical wavenumber depend
on E’ in the same way as derived before for 3=90°. Unless B is very small, there is
again a strong inhibitation of convection by the effects of rotation.
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