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Convection in rotating systems
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Consider rotating frame of reference with rotation vector Ω=Ωez (s is coordinate ⊥ ez). Two
(pseudo-)force terms (Coriolis and centrifugal) are added to Navier-Stokes equation:   DuR/Dt
= DuI/dt + 2Ω ez × uR + Ω2ses.  Centrifugal acceleration ⇒ gradient of a potential, can be
added to gravitational potential ⇒ modified gravity vector g‘ = g – Ω2ses (drop prime later). 

Inertia                          Coriolis       pressure viscosity mod. gravity
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To estimate relative size of terms, scale velocity by U, length by D 
and time by D/U, to obtain non-dimensional equation (gravity omitted):

2
22)(

D
E

D
URoEpe

t
Ro z Ω

=
Ω

=∇=∇+×+∇⋅+
∂
∂ νuuuuu

Rossby number Ekman number

Earth‘s core:  Ω = 7.6×10-5 s-1, U = 0.5 mm/s, D = 2000 km, ν = 2×10-6 m2/s     ⇒ Ro = 3×10-6 E ≈ 10-14

Jupiter‘s outer shell: Ω = 1.7×10-4 s-1, U = 100 m/s, D = 104 km, ν =10-5 m2/s   ⇒ Ro = 0.05   E ≈ 10-15

Symbols (index R - rotating reference frame, I – inertial frame): Ω – rotation frequency, g‘ – modified gravity, U – characteristic
velocity, D – characteristic length (e.g. layer height), Ro – Rossby number, E – Ekman number
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Proudman-Taylor theorem
When both E << 1 and Ro << 1, the dominant force balance
is between pressure gradient and Coriolis force (geostro-
phic balance):  2ez×u = ∇p.  Take curl, use rule ∇×(a×b) = 
(b·∇)a - (a·∇)b + a ∇·b – b ∇·a, to obtain for ∇·u=0
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• If the fluid is bounded by impenetrable walls in z-direction
⇒ uz = 0 everywhere.

• 2D-streamlines follow isobaric lines (p=const)         and     
|u| ~ |∇p|      (geostrophic flow)

• In practice, the Proudman-Taylor theorem is often not
satisfied perfectly, but the fluid has a „dynamical stiffness“
along to the rotation axis

Proudman-Taylor theorem: flow does not change
in the direction of the rotation axis

Rotating cylinder Obstacle

Flow

Bands of 
dye above
obstacle
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Ekman boundary layer
At no-slip boundaries u must drop to zero. If they are not parallel to ez, the
P-T-theorem cannot be satisfied near the boundary. In order to violate it, 
some other force term must be of the same order as the Coriolis/pressure
term. Even for a small value of E, the viscous term becomes large if the
velocity changes on a small length scale

δ ~ E1/2 in dimensional units:       δ = D E1/2 = (ν/Ω)1/2. 

δ is the Ekman layer thickness. For a geostrophic flow u = (u,v,w) = 
(U,0,0) far away from the boundary, the solution to the Navier-Stokes
equation near the boundary is:  

u = U (1 – exp(-z/δ)) cos(z/δ) v = U exp(-z/δ) sin(z/δ)

Near the rigid boundary, the flow forms a 45o angle to the geostrophic flow. 

When the geostrophic flow forms a vortex that rotates in the same sense
as the basic rotation (associated with low pressure), there is a net flow
towards the center of the vortex in the Ekman layer (Ekman suction or
Ekman pumping). There must be a vertical flow away from the boundary. 
The opposite occurs for an anticyclonic vortex.

In the Earth‘s core the Ekman layer thickness is δ ≈ 0.2 m. If the flow
becomes turbulent, the boundary can become much thicker.

v
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geostrophic flow

flow in Ekman layer

Symbols:  δ – Ekman layer thickness, u,v,w – cartesian velocity components,  U – geostrophic flow velocity
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Rotating convection: poloidal / toroidal decomposition
Assume that gravity is parallel to rotation axis: g = -g ez. U not known a-priori - take D2/κ as 
basic time scale (as before). Assume free-slip boundaries and T(z=0)=1, T(z=1)=0. This
time do not make the assumption of 2D-flow.
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Represent velocity by poloidal potential Φ and toroidal potential Ψ (satisfies ∇·u=0 implicitly):

u = ∇×[∇×Φez] + ∇×Ψez (u,v,w) = (∂xzΦ+∂yΨ, ∂yzΦ-∂xΨ, ∆2Φ)  where ∆2:=∂xx+∂yy

The toroidal part of the flow utor has no z-component and ∇×uPol has no radial component. 
Linearize the Navier-Stokes equation and take (1) the curl of the equation and (2) the curl of 
the curl and consider the z-component in both cases:

Ψ∆

Symbols:  (Notation: ∂x:=∂/∂x,  ∆2=∂xx+∂yy)  Ψ- toroidal vector potential, Φ – poloidal potential
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Two scalar equations. Without the Coriolis term (i.e. for E→∞) the two equations decouple.
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Rotating convection: Linear stability

.Set w = -∆2Φ;    ζ = -∆2Ψ = (∇×u)z ;   T = (1-z) + θ.          Linearize temperature equation:
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Isothermal, impenetrable free-slip boundaries: w = ∂zzw = ∂zζ = θ = 0  at  z=0, z=1.
Expansion in normal modes: θ(x,y,z) =  Θklm exp(ikxx+ikyy+σt) sin(mπz)
Satisfies boundary conditions. w(x,y,z) = Wklm exp(ikxx+ikyy+σt) sin(mπz)
m>0 integer. kx, ky real, σ complex. ζ(x,y,z) =    Zklm exp(ikxx+ikyy+σt) cos(mπz)
For E→∞ we recover the Rayleigh-Benard case, where ζ=0. At the critical onset of convection, 
real(σ)=0. General case: σ=iω, consider here only case σ=0.  Set K2 = kx

2+ky
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Replace Z and Θ in 3rd equation by W. Divide by W to obtain critical Rayleigh number:
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Symbols: w – vertical velocity, ζ – z-component of vorticity, θ – temperature perturbation, kx,ky – wave number
components, K=|k|, σ – growth rate. 
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Rotating convection: Linear stability II

.Search minimum of Rac(K,m) (obviously at m=1): apply K4 d/d(K2) and set to zero:
3(K2+π2)2 K2 - (K2+π2)3 – 4E-2π2 = 0

The critical wavenumber is found as root of 3rd-order equation in K2. Consider here only
asymptotic case E << 1. The 3rd term is very large, so Kcrit must be large and only the
leading power in K needs to be retained,  2K6 ≈ 4E-2 π2. Insert Kcrit into expression for Rac, 
keeping again only the leading power:

Racrit = 3(2π2)2/3 E-4/3 ≈ 21.9 E-4/3   Kcrit = (2π2)1/6 E-1/3 ≈ 1.64E-1/3

1) At low Ekman number, the critical Rayleigh number is very large. The wavenumber
becomes large and the aspect ratio of a convection cell, a=π/Kcrit, becomes small.
E >> 1    (Benard convection): Racrit = 657.5 a = 1.414
E = 10-6 (lab experiments): Racrit = 2x109 a = 0.020
E = 10-14 (core, gas planets) Racrit = 2x1021 a = 4x10-5

Rotational forces strongly inhibit convection. Why is this so?
⇒ Because the flow must violate the Proudman-Taylor theorem !

Symbols: a – aspect ratio of convection cell. 
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Discussion of linear stability results II
2) If Racrit is so high in the Earth‘s core, can it convect at all ?   Calculate critical ∆T, 

assuming appropriate values of other properties in the Rayleigh number (ν=2x10-6, 
κ=5x10-6, α=10-5, g=7, D=2.3x106 in SI units):
∆T  =   2x1021 κν/(αgD3) ≈ 3x10-5 K-1 ⇒ very small ∆T enough for supercriticality.

3) The condition of criticality can be written as  Ra E4/3 > 22, or in terms of physical 
parameters:

• unnamed non-dimensional number on left side
• layer thickness D has now only a small influence on the onset of convection
• increasing Ω impedes onset of convection
• increasing ν favors convection (paradox).  Why ? Viscous friction allows for 

deviation from the Proudman-Taylor theorem. This is also the reason for the 
small aspect ratio, since the frictional term is   ν∇2 u ~  νU/a2

• an inviscid fluid, ν→0, is stable for any temperature contrast
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Discussion of linear stability results III
4) As in Benard convection, the 3-D pattern is not determined by the linear stability 

analysis (different kx, ky that result in the same K give the same result). 2D solutions 
(e.g. ky=0) are possible, but for finite E the velocity is not zero in y-direction.

5) When K is large  the ratio between Z and W is   Z = 2π/E K-2 W.  The toroidal velocity 
uT relates to ζ by  ζ=[∇×uT]z. The amplitude of the toroidal flow VT in a modal 
representation is VT = Z/K, therefore     VT = 2π/E K-3 W = 21/2 W     at K=Kcrit.               
At low E, toroidal and poloidal velocities have similar amplitude. The toroidal
flow changes sign at mid-depth (z=1/2) and rotates, in rising flow (w>0) in the same 
sense as the basic rotation for z<1/2 and opposite for z>1/2. The figure shows the 
path of a fluid particle moving in a hexagonal convection cell. 

6) The product  H = u · (∇×u) is called helicity. The 
convective flow at low E is very helical, with helicity
changing sign at mid-depth. Helicity plays an important 
role for the dynamo process in a conducting fluid.

7) When we restrict the analysis to real values of σ, the result 
is independent of the Prandtl number. A more complete 
analysis shows that indeed Im(σ)=0 at Prandtl number Pr 
> 0.68. At Pr < 0.68, oscillating solutions are preferred at 
onset of convection (σ=iω), which can have a lower (but 
for E<<1 still very large) critical Rayleigh number.

Symbols: VT – toroidal velocity amplitude, H – helicity. . 
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Discussion of linear stability results IV
8) What changes when rotation and gravity vector or not parallel ? Assume g = -gez

and Ω = Ω (sinβ ez + cosβ ey).
In the case β=0o the preferred flow consists of 2D-rolls aligned with the y-direction. 
This flow is not in conflict with the Proudman-Taylor theorem. At onset of convection 
the flow is identical to that of the Rayleigh-Benard case and has the same critical 
Rayleigh number (657.5) and critical aspect ratio (21/2). The only differences to the 
case without rotation are that now the pattern (rolls) and their alignment are 
constrained and that a strong pressure gradient between the center of the roll and its 
margins balances the Coriolis force (purely geostrophic convection possible).
When β > 0o rolls aligned with the y-direction are still preferred. Assuming this 
particular flow pattern, the terms describing the effect of the Coriolis force on slide 
6.5 now take the form  2E-1sinβ ∂/∂z, which can be expressed by an effective Ekman
number E’ = E/sinβ and the critical Rayleigh number and critical wavenumber depend 
on E’ in the same way as derived before for β=90o. Unless β is very small, there is 
again a strong inhibitation of convection by the effects of rotation.  
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