8. EXPLOSIVE VOLCANISM

8.1

Pressure increases in the magma chamber due to tectonic movement, crystallization, gas release..., which eventually leads to disruption of the surrounding country rock and a potential eruption.

(e.g. H₂, Sparks and Turner, 1982 and 1983)

8.2

Density of wet magma as a function of the weight fraction of crystals for various total weight fractions of water N.
2. Dry magma ascent

i) Dry magmas ascend up a conduit very much like long gravity currents, under an interplay of fluid mechanics, thermodynamics and elasticity.

a) Fluid mechanics and thermodynamics

\[T = T_C \quad @ t = 0 \]

HOT SHEAR FLOW IN CONTACT WITH A COLD WALL

- LOCAL RATE OF FREEZING \(\nu(z,t) \)
- INSTANTANEOUS DISTANCE FROM WALL \(y \)

\[T_t - \nu T_y + \gamma T_z = \kappa T_{yy} \quad (y > 0) \quad \text{ADVECTION-DIFFUSION} \]

\[T_t - \nu T_y = \kappa T_{yy} \quad (y < 0) \quad \text{DIFFUSION} \]

\[L = -\kappa \frac{1}{c} \frac{d}{dy} \]

INTERFACIAL B.C.

\[T = T_M \quad (y = 0) \]

\[T = T_H \quad (y \to \infty \quad \text{OR} \quad t = 0, y > 0 \quad \text{OR} \quad z = 0, y > 0) \]

\[T = T_C \quad (y \to -\infty \quad \text{OR} \quad t = 0, y < 0) \]

SOLVE SEMI-NUMERICALLY TO ALLOW FOR \(\gamma(t) \)

(BRUCE AND H^2, 1989)

\[L = F_{\text{rock}} - F_{\text{melt}} \]

\[v > 0 \Rightarrow \text{FREEZING} \]

\[v < 0 \Rightarrow \text{MELTING} \]

LARGE \(Z \), SMALL \(t \) \(\Rightarrow F_{\text{rock}} > F_{\text{melt}} \Rightarrow \text{FREEZING} \)

SMALL \(Z \), LARGE \(t \) \(\Rightarrow F_{\text{rock}} < F_{\text{melt}} \Rightarrow \text{MELTING} \)
b) Fluid mechanics and elasticity

2-D SOLUTION

\[\frac{\dot{w}}{\dot{t}} + \frac{\Delta p}{3\eta} \frac{\dot{w}^2}{\dot{z}} = \frac{1}{3\eta} \frac{\dot{z}}{\dot{z}} \left(w^3 \frac{\dot{z}}{\dot{z}} \Delta p \right) \]

SOURCE FLUX \(q \) (constant)

\[\text{BUOYANCY} \]

\[w_\infty = \left(\frac{3\eta v}{3\eta g} \right)^{\frac{1}{2}} \]

ELASTICITY

\[w_\infty \text{ with propagation rate } v = \frac{q}{2w_\infty} \]

solve numerically for \(w(s = z - vt) \)

\[q = 2.5 \text{ m}^2 \text{s}^{-1} \Rightarrow w_\infty = 0.5 \text{ m}, \quad v = 2.5 \text{ ms}^{-1} \]

ii) For "wet" magmas, small exsolved vapour bubbles travel with the magma,

\[v_b \sim 10^{-15} \text{cm s}^{-1} \ll v_m \sim 10^{10} \text{cm s}^{-1} \]

with \(v \) increasing by 10 for every 1 wt % of volatiles exsolved.

3. Wet magma ascent

Linear elasticity

\[\beta : \text{ bulk modulus} \quad \frac{V dp}{\beta} = dV \quad (\ast) \]

Most general equation

\[f(p ; z) dp = dV \quad (\ast \ast) \]
\[Q_o = \left(\pi r_E^2 \right) \Delta p \approx \gamma \Delta p \approx 10^{-6} \Delta p \]

\[p_o + \rho_w g_z \]

\[p_b = p_o + \rho_w g H \approx 2 \times 10^8 \text{ Pa} \]

Mass conservation:
\[\frac{d}{dt}(\rho V) = \rho \frac{dV}{dt} + V \frac{d\rho}{dt} = Q_I - Q_b = Q \] (1)

Density relationship:
\[\rho = \rho\left[\rho, T, x(T), N \right] \] (2)

\[\frac{dV}{dt} + \frac{V}{\rho} \frac{d\rho}{dt} \frac{\partial \rho}{\partial T} = \frac{Q}{\rho} - \frac{V}{\rho} \frac{\partial \rho}{\partial T} \frac{dT}{dt} \] (3)

Rock elasticity:
\[V dp = \beta_r dV \] (\(\beta_r \) rock bulk modulus \(\approx 10^{10} \text{ Pa} \)) (4)

\[\left(\frac{V}{\beta_r} \right) \frac{d\rho}{dt} = \left(\frac{V}{\beta_r} \right) \frac{d\rho}{dt} \]

Effective thermal expansion:

Solubility:
\[n = N - s \rho^{1/2} (1 - x) \] (5)

\(n \) mass fraction of exsolved volatiles; \(s \) solubility constant \(\approx 3 \times 10^{-6} \text{ Pa}^{1/2} \)

Density relationship:
\[\rho = \left[\frac{nPT}{p} + (1-n) \left(\frac{x}{\sigma_c} + \frac{1-x}{\sigma_m} \right) \right]^{-1} \] (6)
\[C = \frac{1}{\beta_{\text{eff}}} \text{ (Pa}^{-1}) \]

\[N = 5\% \]

\[3\% \]

\[1\% \]

\[1 \& 3\% \]

\[x = 0.4 \]

\[H (\text{km}) \]

\[\beta_{\text{eff}} \text{ (Pa)} \]

\[\rho \text{ (MPa)} \]

\[\text{H2 \& Woods (2002, 2003)} \]
4. Steady conduit dynamics

Exit at sonic SPEED and OVERPRESSURE

High speed flow of ash and gas

Fragmentation Level

Magma becomes foam-like

Decompression of liquid magma

VENT

MAGMA CHAMBER

Equations for steady homogeneous flow in pipe

mass conservation \[\rho u A = Q \] (1)

momentum conservation \[\rho u \frac{du}{dz} = -\frac{dp}{dz} - \rho g - f \] (friction) (2)

density \[\rho' = (1 - n)\rho_s + nRT/\rho \] (solid + gas) (3)

volatile content \[n = n_0 - sp^{1/2} \] Henry's law (viscous liquid) (4)

constant \[f \sim \frac{1}{2} \mu u/r^2 \] (turbulent gas) (5a)

\[\sim 0.001 \rho u^2/r \] (5b)

void fraction \[\phi = \left[1 + \frac{(1-n)p}{nRT\rho_s} \right]^{-1} \] (fracture formation at about \(\phi = 75\% \)) (6)
(1), (2), and (3) \[\frac{dp}{dz} \left(1 - \frac{u^2}{a^2} \right) = -\rho g - f \quad (7) \]

where sound speed \[a^2 = \frac{dp}{dp} = a^2(\rho) \quad (8) \]

with \[a = 0.95(n_0RT)^{1/2} \quad (9) \]

Integrate equations from

\[p = \rho_0 \quad (z = 0) \quad \text{(in chamber)} \quad (10) \]

\[p = \rho_e \quad \text{OR} \quad u = a \quad (\rho_e > \rho_0) \quad (z = H) \quad \text{(at surface)} \quad (11) \]

exit pressure
5. Crystals in conduits

mass conservation \(\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial z} \rho w = 0 \) \(w(z, t) \): vertical velocity

momentum conservation \(\frac{\partial P}{\partial z} = -\rho g - \frac{8\mu w}{r_E^2} \)

crystal growth \(\frac{\partial x}{\partial t} + w \frac{\partial x}{\partial z} = 4\pi \Gamma \phi r^3 = (36\pi\phi)^{1/3} \Gamma x^{2/3} \)

number density of crystals \(\phi(z, t) \);

constant linear crystal growth rate \(\Gamma \)

boundary conditions \(z = 0 \) \(\frac{dP}{dt} = \frac{B}{V} (Q_I - Q_0) \); \(x = x_o \)
\(z = H \) \(p = p_{atm} \)
chamber pressure \(P \) vs. magma ascent velocity

8.17

Melnik (1999)

chamber pressure \(P \) vs. time

8.18

Melnik (1999)
6. Simple decompression phase over flat ground

Sonic speed \(a \approx 0.95(n_b RT)^{1/2} \) and overpressure \(5 < \frac{p_e}{p_b} < 100 \)

\[
\nabla \cdot (\rho \mathbf{u}) = 0 \quad \text{(continuity)} \quad (1)
\]

\[
\rho (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p \quad \text{(momentum)} \quad (2)
\]

\[
\rho (\mathbf{u} \cdot \nabla) \left[C_v T + p' \rho + u^2/2 \right] = 0 \quad \text{(enthalpy)} \quad (3)
\]

Integrating over a control volume \(V \)

\[
(1) \Rightarrow \quad \rho u A = Q \quad (4)
\]

\[
(2) \& (4) \Rightarrow \quad u_a = u_e + A \left(\frac{p_e}{p_b} - 1 \right) Q \quad (5)
\]

\[
\approx 1.8(n_b RT)^{1/2} \approx 250 - 400 \text{ ms}^{-1}
\]

\[
(3) \& (5) \Rightarrow \quad T_a \approx T_e \approx 10^3 \text{ K}
\]

7. The physics of eruption columns

Conversion of thermal energy to potential energy in dense, hot, decelerating jet.

If mixture becomes less dense than air before upward momentum exhausted

BUOYANT PLUME

If not, jet collapses

GROUND HUGGING ASH FLOW

Quantitative analysis in terms of entraining plume models of Morton, Taylor and Turner (1956)
Using standard atmospheric values

\[H = 0.0082Q^{1/2} \]
\[Q = \rho_e c_v e (T_e - T_a) \]

- **Q**: Thermal energy production rate (kW)

8. Important concepts

- Pressure increase in magma chambers
- Dry magmas ascend under influence of pressure release, fluid mechanics, thermodynamics and elasticity
- Wet magmas exsolve water vapour as they rise
- At fragmentation level, liquid film surrounding gas bubbles fracture and material evolves from a bubbly liquid (with solids) to an ash-laden gas (with small pockets of liquid) at around $\phi = 75\%$
- Eruption decompresses to enter atmosphere between 250 and 400 m s$^{-1}$
- Large base velocity and small flux produces buoyant plume, while small base velocity and large flux produces pyroclastic flows
- Energy in natural events greatly dominates that in those due to man (controlled or otherwise)
- 12 of the 16 largest volcanic eruptions in the last 200 years occurred at sites believed to be inactive
Lecture 8. Explosive Volcanism

