Parameter Dependence of Eastward-Westward Asymmetric Jets in Forced Barotropic 2D Turbulence on a β -plane

Shin'ya MURAKAMI and Takahiro IWAYAMA

Graduate School of Science and Technology, Kobe University, Japan.

Introduction

Background 1.1

- Zonal flow is dominated in forced 2D turbulence on a β -plane.
- alternating zonal jets in latitude.
- -When β is large, asymmetric zonal flow exists.
 - Vallis & Maltrud(1993), Danilov & Gryanik(2004),
 - Danilov & Gurarie(2004)
 - * Eastward flow is narrower and faster than westward flow (see Figure 1(a))
- * saw-tooth pattern of the vorticity profile (see Figure 1(b)).

Figure 1. Three zonally averaged profiles calculated from a numerical experiment, (a) zonal velocity, (b)relative vorticity, (c) meridional gradient of relative vorticity.

- Mechanisms of producing the zonally asymmetric jet have not been well known yet. A possible mechanism have been proposed. (e.g., Smith & Lee, 2006)
- Parameter dependence of zonal asymmetry of zonal jets have not been known yet. \rightarrow the present study (In the present study, we concentrate our attention on the saw-tooth profile of zonally averaged vorticity.)

Definition of zonal asymmetricity 2

We define zonal asymmetricity as the ratio of zonally averaged relative vorticity gradient: $r := \zeta_{y+}/|\zeta_{y-}|$.

$$\begin{split} \overline{\zeta}_{y+} &:= \frac{1}{L_+} \int_{\overline{\zeta}_y > 0} \overline{\zeta}_y \, dy, \qquad L_+ := \int_{\overline{\zeta}_y > 0} dy \\ \overline{\zeta}_{y-} &:= \frac{1}{L_-} \int_{\overline{\zeta}_y < 0} \overline{\zeta}_y \, dy, \qquad L_- := \int_{\overline{\zeta}_y < 0} dy \end{split}$$

According to Danilov & Gurarie (2004), we approximate the vorticity profile(Figure 1(b)) to an idealized saw-tooth pattern as Figure 2(b). Then, the vorticity gradient has piecewise constant profile(see Figure 2(c)). In this approximation, ζ_{y+} and ζ_{y-} defined above correspond to those in Figure 2(c). Moreover, if the jet wavenumber k_i is known, $l_{+} = L_{+}/k_{j}$ and $l_{-} = L_{-}/k_{j}$ correspond to the width of regions $\zeta_{y} > 0$

- $-l_{+}$ greatly decreases.
- r decreases in $\beta \ge 200$
- $-l_{-}$ slightly, monotonically decreases.
- $-l_+$ is nearly equal to l_f .
- Therefore r has an upper bound at $\beta_c \approx 200$.
- Comparison of l_+ and l_- with 5 pre-existing length scales
- Background 5.1

Figure 4: Comparison of local characteristic scales and l_+ and l_- .

- local Vallis and Maltrud scale can predict l_+ very well.
- $-l_+$ can be interpreted as a scale dividing the wave and turbulence regimes.
- local Rhines scale can give relatively good estimate to l_+ and l_- .

Summary 6

We examine the saw-tooth profile of the zonally averaged vorticity in forced 2D turbulence on a *beta*-plane, by analyzing the results on numerical simulation.

and $\zeta_u < 0$, respectively (see Figure 2(c)).

Since $\int \overline{\zeta}(y) dy = 0$, $L_+ \overline{\zeta}_{y+} = -L_- \overline{\zeta}_{y-}$. This leads to $r = l_-/l_+$.

Figure 2. Three zonally averaged profiles calculated as vorticity gradient is piecewise constant, (a) zonal velocity, (b) relative vorticity, (c) meridional gradient of relative vorticity.

Parameter dependence of r is determined by l_+ and l_- . We explore a parameter dependence of l_+ , l_- and r_- .

Basic equation and 3 conditions of numerical experiment

Basic equation 3.1

barotropic vorticity equation on a β -plane

$$\frac{\partial \zeta}{\partial t} + \frac{\partial \psi}{\partial x}\frac{\partial \zeta}{\partial y} - \frac{\partial \psi}{\partial y}\frac{\partial \zeta}{\partial x} + \beta\frac{\partial \psi}{\partial x} = D\zeta + F$$

• $\zeta = \nabla^2 \psi$: relative vorticity

Three characteristic scales in two-dimensional turbulence on a β -plane. • Rhines scale, $k_{\rm Rh} = \sqrt{\beta/U_{\rm rms}}$ • Holloway-Hendershott scale, $k_{\rm HH} = \beta / \zeta_{\rm rms}$

• Vallis-Maltrud scale, $k_{\rm VM} = \left(\frac{\beta^3}{(0.75C_k)^{3/2}\epsilon}\right)^{1/5}$

It is well-known that Rhines scale can predict $l = l_+ + l_-$ very well. Question: Can Rhines and HH and VM scales predict l_+ and l_- ?

locally defined characteristic wavenumber 5.2We define local characteristic wavenumbers in the region where $\overline{\zeta}_y > 0$, and the region where $\zeta_y < 0$. We write effective β in each region for the simplicity,

> $\beta_+ := \beta + \overline{\zeta}_{y+}$, effective β at $\overline{\zeta}_y > 0$, $\beta_{-} := \beta + \overline{\zeta}_{y-}, \text{ effective } \beta \text{ at } \overline{\zeta}_{y} < 0.$

Rhines scale 5.2.1

We define local Rhines scale, using effective β and difference zonal velocity from locally defined mean zonal velocity,

$$k_{\rm Rh+} := \sqrt{\frac{\beta_+}{U'_{+\rm rms}}}, \qquad k_{\rm Rh-} := \sqrt{\frac{\beta_-}{U'_{-\rm rms}}}.$$
 (2)

(1)

• We define eastward-westward asymmetricity r as $r := l_{-}/l_{+}$.

• We investigate parameter dependence of l_+ , l_- and r_- .

-When β is sufficiently large, $l_+ \approx l_f$.

 $-l_{-}$ is less decrease than l_{+} . \rightarrow This leads to increase of r.

• We investigate whether locally defined characteristic scales can predict l_+ and l_- .

- -local Vallis and Maltrud scale can predict l_+ very well.
- -local Rhines scale can give relatively good estimate to l_+ and l_- .

References

- [1] Danilov, S., and Gurarie, D., 2002: Rhines scale and spectra of the β -plane turbulence with bottom drag, *Phys. Rev.*, **E65**, 067301-1-067301-3.
- [2] Danilov, S., and Gurarie, D., 2004: Scaling, specra and zonal jets in beta-plane turbulence. Phys. Fluids, 16, 2592-2603.
- [3] Danilov, S., Gryanik, V.M., 2004: Barotropic beta-plane turbulence in a regime with strong zonal jets revisited, J. Atmos. Sci., 61, 2283-2295.
- [4] Holloway, G., and Hendershott, M., 1977: Stochastic closure for nonlinear Rossby waves, J.Fluid Mech., 82, 747-765.
- [5] Rhines, P.B., 1975: Waves and turbulence on the β -plane. J.Fluid *Mech.*, **69**, 417-443.
- [6] Vallis, G.K., and Maltrud, M.E. 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanog. 23, 1346-1362.
- [7] Smith, L.M., and Lee, Y. 2006: A mechanism for the formation of

• ψ : stream function

• β : the meridional gradient of Coriolis parameter

• D: dissipation operator

• F: forcing

Conditions of Numerical Experiments 3.2

• $D = -\lambda_n (-\nabla^2)^{-n} - \nu_m (-\nabla^2)^m$

• F: Markovian forcing, homogeneously given in the range where total wavenumber k is $98 \le k \le 102$.

• nearly constant energy input rate ϵ

• initialized at zero vorticity

- doubly periodic boundary condition, and domain size is $2\pi \times 2\pi$ • spectral method
- 2nd order Adams-Bashforth time stepping scheme • grid point number: 512^2

• truncation wavenumber: 170

• $\lambda_2 = 50, 123, 300, \lambda_1 = 5$

• β varies from 0 to 600.

Holloway-Hendershott scale 5.2.2

We define local Holloway-Hendershott scale,

$$k_{\rm HH+} := \frac{\beta_+}{\zeta_{\rm +rms}}, \qquad k_{\rm HH-} := \frac{\beta_-}{\zeta_{\rm -rms}}, \tag{5}$$

where $\zeta_{\rm rms} = \zeta_{\rm +rms} = \zeta_{\rm -rms}$.

Vallis-Maltrud scale 5.2.3

We define local Vallis and Maltrud scale in each region,

We assume that energy input rate ϵ is same in two regions.

jets and vortices in rotating flows, Conference on Turbulence and Interactions TI2006, France.