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1 Introduction

1.1 Background

• Zonal flow is dominated in forced 2D turbulence on a β-plane.

• alternating zonal jets in latitude.

– When β is large, asymmetric zonal flow exists.

Vallis & Maltrud(1993), Danilov & Gryanik(2004),
Danilov & Gurarie(2004)

∗ Eastward flow is narrower and faster than westward flow (see Fig-
ure 1(a))

∗ saw-tooth pattern of the vorticity profile (see Figure 1(b)).
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Figure 1. Three zonally averaged profiles calculated from a numeri-
cal experiment, (a) zonal velocity, (b)relative vorticity, (c) meridional
gradient of relative vorticity.

• Mechanisms of producing the zonally asymmetric jet have not been
well known yet. A possible mechanism have been proposed. (e.g.,
Smith & Lee, 2006)

• Parameter dependence of zonal asymmetry of zonal jets have not been
known yet. → the present study (In the present study, we concentrate
our attention on the saw-tooth profile of zonally averaged vorticity.)

2 Definition of zonal asymmetricity

We define zonal asymmetricity as the ratio of zonally averaged relative
vorticity gradient: r := ζy+/|ζy−|.

ζy+ :=
1

L+

∫
ζy>0

ζy dy, L+ :=

∫
ζy>0

dy

ζy− :=
1

L−

∫
ζy<0

ζy dy, L− :=

∫
ζy<0

dy

According to Danilov & Gurarie(2004), we approximate the vorticity
profile(Figure 1(b)) to an idealized saw-tooth pattern as Figure 2(b).
Then, the vorticity gradient has piecewise constant profile(see Figure
2(c)). In this approximation, ζy+ and ζy− defined above correspond
to those in Figure 2(c). Moreover, if the jet wavenumber kj is known,

l+ = L+/kj and l− = L−/kj correspond to the width of regions ζy > 0

and ζy < 0, respectively (see Figure 2(c)).

Since
∫

ζ(y)dy = 0, L+ζy+ = −L−ζy−. This leads to r = l−/l+.

U(y)

y

0

lw

le

UmaxUmin

(a)

ζ(y)

y

0

l
−

l+

ζ0−ζ0

(b)

ζy(y)

y

0

l
−

l+

ζy+ζy−

(c)

Figure 2. Three zonally averaged profiles calculated as vorticity gra-
dient is piecewise constant, (a) zonal velocity, (b) relative vorticity, (c)
meridional gradient of relative vorticity.

Parameter dependence of r is determined by l+ and l−.
→ We explore a parameter dependence of l+, l− and r.

3 Basic equation and

conditions of numerical experiment

3.1 Basic equation

barotropic vorticity equation on a β-plane

∂ζ

∂t
+

∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
+ β

∂ψ

∂x
= Dζ + F (1)

• ζ = ∇2ψ: relative vorticity

• ψ: stream function

• β: the meridional gradient of Coriolis parameter

•D: dissipation operator

• F : forcing

3.2 Conditions of Numerical Experiments

•D = −λn(−∇2)−n − νm(−∇2)m

• F : Markovian forcing, homogeneously given in the range where total
wavenumber k is 98 ≤ k ≤ 102.

• nearly constant energy input rate ε

• initialized at zero vorticity

• doubly periodic boundary condition, and domain size is 2π × 2π

• spectral method

• 2nd order Adams-Bashforth time stepping scheme

• grid point number: 5122

• truncation wavenumber: 170

• λ2 = 50, 123, 300, λ1 = 5

• β varies from 0 to 600.

4 Results

4.1 Results
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Figure 3: (a) β dependence of r (b) β dependence of l+ and l−.

• features of β dependence of r (Figure 3(a))

– r increases as β increases in 0 ≤ β ≤ 200.

– r decreases as β increases in β ≥ 200.

• features of β dependence of l+ (Figure 3(b))

– l+ greatly decreases in 0 ≤ β ≤ 200.

– l+ is nearly equal to the forcing scale lf in β ≥ 200.

• features of β dependence of l− (Figure 3(b))

– l− monotonically decreases in all ranges of β.

– l− less decrease than l+.

4.2 Why r has an upper bound?

The sign of the variation of r depending on β changes at β ≈ 200.

• r increases in β ≤ 200,

– l− slightly decreases.

– l+ greatly decreases.

• r decreases in β ≥ 200

– l− slightly, monotonically decreases.

– l+ is nearly equal to lf .

Therefore r has an upper bound at βc ≈ 200.

5 Comparison of l+ and l− with

pre-existing length scales

5.1 Background

Three characteristic scales in two-dimensional turbulence on a β-plane.

• Rhines scale, kRh =
√

β/Urms

• Holloway-Hendershott scale, kHH = β/ζrms

• Vallis-Maltrud scale, kVM =
(

β3

(0.75Ck)3/2ε

)1/5

It is well-known that Rhines scale can predict l = l+ + l− very well.

Question: Can Rhines and HH and VM scales predict l+ and l−?

5.2 locally defined characteristic wavenumber

We define local characteristic wavenumbers in the region where ζy > 0,

and the region where ζy < 0.
We write effective β in each region for the simplicity,

β+ := β + ζy+, effective β at ζy > 0,

β− := β + ζy−, effective β at ζy < 0.

5.2.1 Rhines scale

We define local Rhines scale, using effective β and difference zonal veloc-
ity from locally defined mean zonal velocity,

kRh+ :=

√
β+

U ′
+rms

, kRh− :=

√
β−

U ′
−rms

. (2)

where

U ′
+ := U(y) − 1

L+

∫
ζy>0

U(y)dy, (3)

U ′
− := U(y) − 1

L−

∫
ζy<0

U(y)dy. (4)

5.2.2 Holloway-Hendershott scale

We define local Holloway-Hendershott scale,

kHH+ :=
β+

ζ+rms
, kHH− :=

β−
ζ−rms

, (5)

where ζrms = ζ+rms = ζ−rms.

5.2.3 Vallis-Maltrud scale

We define local Vallis and Maltrud scale in each region,

kVM+ :=

(
β3

+

(0.75Ck)
3/2ε

)1/5

, kVM− :=

(
β3
−

(0.75Ck)
3/2ε

)1/5

.

(6)
We assume that energy input rate ε is same in two regions.

5.3 Results
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Figure 4: Comparison of local characteristic scales and l+ and l−.

• local Vallis and Maltrud scale can predict l+ very well.

– l+ can be interpreted as a scale dividing the wave and turbulence
regimes.

• local Rhines scale can give relatively good estimate to l+ and l−.

6 Summary

We examine the saw-tooth profile of the zonally averaged vorticity in
forced 2D turbulence on a beta-plane, by analyzing the results on nu-
merical simulation.

• We define eastward-westward asymmetricity r as r := l−/l+.

• We investigate parameter dependence of l+, l− and r.

– When β is sufficiently large, l+ ≈ lf .

– l− is less decrease than l+. → This leads to increase of r.

• We investigate whether locally defined characteristic scales can predict
l+ and l−.

– local Vallis and Maltrud scale can predict l+ very well.

– local Rhines scale can give relatively good estimate to l+ and l−.
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