Parameter Dependence of Eastward-Westward Asymmetric Jets

in Forced Barotropic 2D Turbulence on a G-plane

1 Introduction

1.1 Background

e Zonal flow is dominated in forced 2D turbulence on a (-plane.
e alternating zonal jets in latitude.

— When (3 is large, asymmetric zonal flow exists.

Vallis & Maltrud(1993), Danilov & Gryanik(2004),
Danilov & Gurarie(2004)

* Eastward flow is narrower and faster than westward flow (see Fig-
ure 1(a))
* saw-tooth pattern of the vorticity profile (see Figure 1(b)).
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Figure 1. Three zonally averaged profiles calculated from a numeri-
cal experiment, (a) zonal velocity, (b)relative vorticity, (c¢) meridional
oradient of relative vorticity.

e Mechanisms of producing the zonally asymmetric jet have not been
well known yet. A possible mechanism have been proposed. (e.g.,

Smith & Lee, 20006)

e Parameter dependence of zonal asymmetry of zonal jets have not been
known yet. — the present study (In the present study, we concentrate
our attention on the saw-tooth profile of zonally averaged vorticity.)

2 Definition of zonal asymmetricity

We define zonal asymmetricity as the ratio of zonally averaged relative
vorticity gradient: r := ¢, 1 /|C,—|.
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According to Danilov & Gurarie(2004), we approximate the vorticity
profile(Figure 1(b)) to an idealized saw-tooth pattern as Figure 2(b).
Then, the vorticity gradient has piecewise constant profile(see Figure
2(c)). In this approximation, Zy + and Zy_ defined above correspond
to those in Figure 2(c). Moreover, if the jet wavenumber k; is known,
ly = Ly/kjand I = L_/k; correspond to the width of regions ¢, > 0
and Zy < 0, respectively (see Figure 2(c)).

Since [ ((y)dy = 0, L+Ey+ — —L_Zy_. This leads to r =1_ /1.
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Figure 2. Three zonally averaged profiles calculated as vorticity gra-
dient is piecewise constant, (a) zonal velocity, (b) relative vorticity, (c)
meridional gradient of relative vorticity:.

Parameter dependence of r is determined by (4 and [_.
- We explore a parameter dependence of [, [— and r.

3 Basic equation and
conditions of numerical experiment

3.1 Basic equation

barotropic vorticity equation on a -plane

a¢ oo opa¢ oY
ot " oxdy  owor ar D¢ TE (1)

o ( = V2 relative vorticity

e /: stream function

e 3: the meridional gradient of Coriolis parameter
e [: dissipation operator

e [': forcing

3.2 Conditions of Numerical Experiments

o D = XAy (—V2) " — yp(— V)T

e I: Markovian forcing, homogeneously given in the range where total
wavenumber k is 98 < k£ < 102.

e nearly constant energy input rate €

e initialized at zero vorticity

e doubly periodic boundary condition, and domain size is 27w X 27

e spectral method

e 2nd order Adams-Bashforth time stepping scheme

e orid point number: 5122

e truncation wavenumber: 170

e \o = 50,123,300, \{ =5

e (J varies from 0 to 600.
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4 Results

4.1 Results

(a) B dependence of asymmetricity (b) B dependence of I, and I
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Figure 3: (a) 8 dependence of 7 (b) 8 dependence of [ and [_.

o features of 0 dependence of r (Figure 3(a))

—r increases as 3 increases in 0 < 8 < 200.

— 1 decreases as 3 increases in 5 > 200.
o features of # dependence of I (Figure 3(b))

— [+ greatly decreases in 0 < 3 < 200.
— l+ 1s nearly equal to the torcing scale [ in 5 > 200.

o features of # dependence of [_ (Figure 3(b))

— [— monotonically decreases in all ranges of 3.

—[_ less decrease than [.

4.2 Why r has an upper bound?

The sign of the variation of r depending on 5 changes at 3 ~ 200.
e 1 increases in 3 < 200,

—[_ slightly decreases.

— [ greatly decreases.

e r decreases in 3 > 200
— [ slightly, monotonically decreases.
— I+ 1s nearly equal to (.

Therefore r has an upper bound at G. ~ 200.

5 Comparison of [, and [_ with
pre-existing length scales

5.1 Background

Three characteristic scales in two-dimensional turbulence on a G-plane.
e Rhines scale, kry, = \/ G U ne
e Holloway-Hendershott scale, kg = 8/Crms

e Vallis-Maltrud scale, kv = (<0 75Ck)3/2€)

It is well-known that Rhines scale can predict [ = [+ + [— very well.
Question: Can Rhines and HH and VM scales predict [+ and [_7

5.2 locally defined characteristic wavenumber

We define local characteristic wavenumbers in the region where Zy > (0,

and the region where Zy < 0.
We write effective 3 in each region for the simplicity,

6L = +Zy+, effective ( at Zy > 0,
B =0 +Ey_, effective (3 at Zy < 0.

5.2.1 Rhines scale

We define local Rhines scale, using effective 8 and difference zonal veloc-
ity from locally defined mean zonal velocity,

b+ b
kR = ., kpn- = - (2)
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5.2.2 Holloway-Hendershott scale

We define local Holloway-Hendershott scale,

Where Crms — C—I—rms — C—I’HlS°

5.2.3 Vallis-Maltrud scale

We define local Vallis and Maltrud scale in each region,

3 1/5 3 1/5
v = ﬁ—i_ Fvv— = b :
i (0.75C; )3/ %€ | N (0.75C; )3/ %€

(6)

We assume that energy input rate € is same in two regions.

5.3 Results

Rh
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Figure 4: Comparison of local characteristic scales and {4+ and [—.

e local Vallis and Maltrud scale can predict {4+ very well.

— [+ can be interpreted as a scale dividing the wave and turbulence
regimes.

e local Rhines scale can give relatively good estimate to [+ and [—.

6 Summary

We examine the saw-tooth profile of the zonally averaged vorticity in
forced 2D turbulence on a beta-plane, by analyzing the results on nu-
merical simulation.

e We define eastward-westward asymmetricity r as r .= [_ /4.
e We investigate parameter dependence of [, [ and 7.

— When [ is sufficiently large, [+ ~ [ .

—[_ is less decrease than (. — This leads to increase of 7.

e We investigate whether locally defined characteristic scales can predict
[+ and [_.
—local Vallis and Maltrud scale can predict [+ very well.
—local Rhines scale can give relatively good estimate to (4 and [—.
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