Referred articles

  1. Tang, B. H., J. Fang, A. Bentley, G. Kilroy, M. Nakano, M.-S. Park, V.P.M. Rajasree, Z. Wang, A. A. Wing, L. Wu, 2020: Recent Advances in Research on Tropical Cyclogenesis, Tropical Cyclone Research and Review, 9, 87-105, doi:10.1016/j.tcrr.2020.04.004
  2. Sugi, M., Y. Yamada, K. Yoshida, R. Mizuta, M. Nakano, C. Kodama, M. Satoh, 2020: Future changes in the global frequency of tropical cyclone seeds, SOLA, 16, 70-74, doi:10.2151/sola.2020-012
  3. Qian, Y., H. Murakami, M. Nakano, P.-C. Hsu, T. L. Delworth, S. B. Kapnick, V. Ramaswamy, T. Mochizuki, Y. Morioka, T. Doi, T. Kataoka, T. Nasuno, K. Yoshida, 2019: On the mechanisms of the active 2018 tropical cyclone season in the North Pacific. Geophysical Research Letters, 46, 12293-12302, doi:10.1029/2019GL084566
  4. Yamada, Y., C. Kodama, M. Satoh, M. Nakano, T. Nasuno, and M. Sugi, 2019: High-resolution Ensemble Simulations of Intense Tropical Cyclones and Their Internal Variability During the El Ninos of 1997 and 2015. Geophys. Res. Lett., 46, 7592-7601, doi:10.1029/2019GL082086
  5. Nakano, M., and K. Kikuchi, 2019: Seasonality of Intraseasonal Variability in Global Climate Models. Geophys. Res. Lett., 46, 4441-4449, doi:10.1029/2019GL082443
  6. Fujita, M., T. Sato, T. J. Yamada, S. Kawazoe, M. Nakano, and K. Ito, 2019: Analyses of extreme precipitation associated with the Kinugawa River flood in September 2015 using a large ensemble downscaling experiment. J. Meteor. Soc. Japan, 97, 387-401, doi:10.2151/jmsj.2019-022
  7. Matsuoka, D., M. Nakano, D. Sugiyama, and S. Uchida, 2018: Deep learning approach for detecting tropical cyclones and their precursors in the simulation by a cloud-resolving global nonhydrostatic atmospheric model. Prog. Earth Planet. Sci., 5:80, doi:10.1186/s40645-018-0245-y
  8. Nakano, M., H. Yashiro, H. Tomita and C. Kodama, 2018: Single Precision in the Dynamical Core of a Nonhydrostatic Global Atmospheric Model: Evaluation Using a Baroclinic Wave Test Case. Mon. Wea. Rev., 146, 409-416, doi:10.1175/MWR-D-17-0257.1
  9. Yamada, Y., M. Satoh, M. Sugi, C. Kodama, A.T. Noda, M. Nakano, and T. Nasuno, 2017: Response of Tropical Cyclone Activity and Structure to Global Warming in a High-Resolution Global Nonhydrostatic Model. J. Clim., 30, 9703-9724, doi:10.1175/JCLI-D-17-0068.1
  10. Nasuno, T., K. Kikuchi, M. Nakano, Y. Yamada, M. Ikeda, and H. Taniguchi, 2017: Evaluation of the Near real-time Forecasts Using a Global Nonhydrostatic Model during the CINDY2011/DYNAMO, J. Meteor. Soc. Jpn, 95, 345-368, doi:10.2151/jmsj.2017-022
  11. Nakano, M, H. Kubota, T. Miyakawa, T. nasuno and M. Satoh, 2017: Genesis of Super Cyclone Pam (2015): Modulation of Low-Frequency Large-Scale Circulations and the Madden-Julian Oscillation by Sea Surface Temperature Anomalies, Mon. Wea. Rev., 145, 3143-3159, doi:10.1175/MWR-D-16-0208.1
  12. Satoh, M., H. Tomita., H. Yashiro, Y. Kajikawa, Y. Miyamoto, T. Yamaura, T. Miyakawa, M. Nakano, C. Kodama, A. T. Noda, T. Nasuno, Y. Yamada, Y. Fukutomi, 2017: Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer, Prog. Earth Planet. Sci., 4, doi:10.1186/s40645-017-0127-8
  13. Nakano, M., A. Wada, M. Sawada, H. Yoshimura, R. Onishi, S. Kawahara, W.Sasaki, T. Nasuno, M. Yamaguchi, T. Iriguchi, M. Sugi, and Y. Takeuchi, 2017: Global 7-km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): Experimental design and preliminary results, Geosci. Model Dev.,10, 1363-1381, doi:10.5194/gmd-10-1363-2017
  14. Kikuchi, K., C. Kodama, T. Nasuno, M. Nakano, H. Miura, M. Satoh, A. T. Noda, Y. Yamada, 2017: Tropical intraseasonal oscillation simulated in an AMIP-type experiment by NICAM, Geophys. Clim., Dyn., 48, 2507-2528, doi:10.1007/s00382-016-3219-z.
  15. Nasuno, T., H. Yamada, M. Nakano, H. Kubota, M. Sawada, and R. Yoshida, 2016: Global cloud-permitting simulations of Typhoon Fengshen (2008), Geosci. Lett. 3, 22, doi:10.1186/s40562-016-0064-1.
  16. Nakano, M., M. Sawada, T. Nasuno, M. Satoh, 2015: Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model, Geophys. Res., Lett. 42, 565-571, doi:10.1002/2014GL062479.
  17. Nakano, M., M. Matsueda, M. Sugi, 2013: Future projections of heatwaves around Japan simulated by CMIP3 and high-resolution MRI atmospheric climate models, J. Geophys. Res., 118, 3097-3109, doi:10.1002/jgrd.50260.
  18. Nakano, M., T. Kato, S. Hayashi, S. Kanada, Y. Yamada, K. Kurihara, 2012: Development of a 5-km-mesh cloud-system-resolving regional climate model at the Meteorological Research Institute, J. Meteor. Soc. Jpn., 90A, 339-350, doi:10.2151/jmsj.2012-A19.
  19. Murata, A., M. Nakano, S. Kanada, K. Kurihara, H. Sasaki, 2012: Summertime temperature extremes over Japan in the late 21st century projected by a high-resolution regional climate model, J. Meteor. Soc. Jpn., 90A, 101-122, doi:10.2151/jmsj.2012-A05.
  20. Kanada, S., A. Wada, M. Nakano, T. Kato, 2012: Effect of planetary boundary layer schemes on the development of intense tropical cyclones using a cloud-resolving model, J. Geophys. Res., 117 (D3), D03107, doi:10.1029/2011JD016582.
  21. Kanada, S., M. Nakano, and T. Kato, 2012: Projection of future changes in precipitation and the vertical structures of the frontal zone during the Baiu season in the vicinity of Japan using a 5-km-mesh regional climate model. J. Meteor. Soc. Japan. 90A, 65-86, doi:10.2151/jmsj.2012-A03.
  22. Nakano M., S. Kanada, T. Kato, K. Kurihara, 2011: Monthly maximum number of consecutive dry days in Japan and its reproducibility by a 5-km-mesh cloud-system resolving regional climate model, Hodrologial Research Letters, 5, 11-15, doi:10.3178/hrl.5.11.
  23. Kanada, S., M. Nakano, T. Kato, 2010: Changes in mean atmospheric structures around Japan during July due to global warming in regional climate experiments using a cloud-system resolving model, Hydrological Research Letters, 4, 11-14, doi:10.3178/hrl.4.11.
  24. Kanada, S., M. Nakano, and T. Kato, 2010: Climatological characteristics of daily precipitation over Japan in the Kakushin regional climate experiments using a non-hydrostatic 5-km-mesh model: Comparison with an outer global 20-km-mesh atmospheric climate model, SOLA, 6, 117-120, doi:10.2151/sola.2010-030.
  25. Nakano, M., S. Kanada, T. Kato, 2010: Statistical analysis of simulated direct and indirect precipitation associated with typhoons around Japan using a cloud-system resolving model, Hydrological Research Letters, 4, 6-10, doi:10.3178/hrl.4.6.
  26. Oku, Y., T. Takemi, H. Ishikawa, S. Kanada, M. Nakano, 2010: Representation of Extreme Weather during a Typhoon Landfall in Regional Meteorological Simulations: A Model Intercomparison Study for Typhoon Songda (2004), Hydrological Research Letters, 4, 1-5, doi:10.3178/hrl.4.1.
  27. Kanada, S., M. Nakano, S. Hayashi, T. Kato, M. Nakamura, K. Kurihara, A. Kitoh, 2008: Reproducibility of Maximum Daily Precipitation Amount over Japan by a High-resolution Non-hydrostatic Model, SOLA, 4, 105-108, doi:10.2151/sola.2008-027.

Thesis