
Overview of stirring and mixing

December 7, 2000

1 Diffusion by discontinous movements

In 1827 Robert Brown, observed that suspended pollen grains are in an
uninterrupted and irregular “swarming” motion. Brown was a botanist and
at first he believed that only organic materials exhibited this agitation. But
very soon he extended his observations to particles of inorganic material, such
as a ground-up fragment of the Sphinx. Through the nineteenth century there
was a intermittent discussion concerning the cause of this Brownian motion,
and in 1877 Delsaux suggested that the impact of molecules on a macroscopic
particle produces observable displacements. In 1905, after nearly a century
of debate, Einstein definitively explained this phenomenon [6, 7].

1.1 Einstein’s derivation of the diffusion equation

Our interest here is in Einstein’s derivation of the diffusion equation, which
is very different from that of Fourier. We consider one-dimensional Brownian
motion by projecting the location of the particle onto a straight line which
we call the x-axis.

Einstein’s assumptions are the following: (i) the particles move indepen-
dently of one another; (ii) we observe particle positions at time intervals τ
which are much greater than the time intervals between molecular collisions.
As a result, the motion in one interval is independent of what happened in
the previous interval.

In the interval τ each particle has a random displacement ∆ along the
x-axis. The probability density function (PDF) of ∆ is φ(∆). This means
that if we observe N � 1 particles for a time τ then the number of particles
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A random walk with 200 steps

Figure 1: Simulated Brownian motion using MATLAB; the routine rand is used
to generate a sequence of 200 random displacements.

which are displaced through a distance which lies between ∆ and ∆ + d∆ is

dN = Nφ(∆) d∆. (1)

The PDF φ(∆) does not change from interval to interval, and φ is symmetric
and normalised:

φ(∆) = φ(−∆) ,

∫ ∞

−∞
φ(∆) d∆ = 1. (2)
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The average of any function of ∆, f(∆), is

f̄ ≡
∫ ∞

−∞
f(∆)φ(∆) d∆ . (3)

In particular, ∆2 is the mean square displacement in a single step.
If the concentration of particles at time t is denoted by c(x, t), then the

evolution of c is determined from the master equation:

c(x, t + τ) =

∫ ∞

−∞
c(x− ∆, t)φ(∆) d∆ . (4)

The integral over ∆ is a sum over the prior locations of the particles which
are at x at time t + τ . Thus, the number of particles in the interval (x −
∆, x − ∆ + d∆) is c(x − ∆, t)d∆ and φ(∆) is the fraction of these particles
which jump from x− ∆ onto x.

If the concentration c(x, t) changes on a length scale which is much greater
than the root mean square displacement, then we can approximate the inte-
gral equation (4) by the diffusion equation. This assumption that c is slowly
varying means that it it is sensible to use a Taylor series expansion

c(x, t) + τct(x, t) ≈
∫ ∞

−∞
φ(∆)

[
c(x, t) − ∆cx(x, t) +

∆2

2
cxx(x, t)

]
d∆. (5)

Next, using (2), we reduce (5) to

ct(x, t) ≈ Dcxx(x, t) , D ≡ ∆2

2τ
. (6)

This is the diffusion equation, and D is the diffusivity.
The greatness of Einstein’s contribution to this subject is not the deriva-

tion above but rather his formula for the diffusivity of a macroscopic particle

D =
RT

6πNνa
, (7)

where R is the gas constant, T the absolute temperature, N the Avogadro
number, ν the coefficient of viscosity and a the radius of the particle. Coin-
cidentally (7) was also discovered by William Sutherland in Australia, also
in 1905. This relation enabled Perrin to determine Avogadro’s number by
observing Brownian displacements [7].
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The diffusion equation is an approximation of the more exact master equa-
tion. As we try to design parameterizations of nonlocal mixing processes, in
which scale separation assumptions are shaky, we should pay more attention
to this history and consider the possibility of using integral equations such
as (4). Notice also that if the Taylor expansion in (5) is continued to higher
order then one will usually (i.e. for most kernels φ) obtain a hyperdiffusive
term such as cxxxx.

1.2 The method of moments

As a check on the derivation of (6), we take a different approach using the
method of moments. A moment of the concentration is an integral of the
form ∫ ∞

−∞
xnc(x, t) dx. (8)

The zeroth moment, n = 0 in (8), is the total number of particles:

N =

∫ ∞

−∞
c(x, t) dx. (9)

The first and second moments can be interpreted as the center of mass and
moment of inertia of the concentration profile.

We expect that N is constant, and it is educational to verify this con-
servation law for both the master equation and the diffusion equation by
“taking the zeroth moment”. Integrating (4) from x = −∞ to x = +∞, and
changing the order of the integrals on the RHS gives

N(t + τ) =

∫ ∞

−∞
d∆φ(∆)

∫ ∞

−∞
dx c(x− ∆, t). (10)

Changing variables to x′ = x− ∆ in the inner integral, and using (2), gives
the particle conservation law that N(t + τ) = N(t). The diffusive analog of
particle conservation is easily obtained by integrating the diffusion equation
(6) from x = −∞ to x = +∞. Provided that Dcx vanishes at x = ±∞
(physically, there is no flux of particles from infinity) one immediately finds
that Nt = 0.

Extending the procedure above to higher moments, we can make a com-
parison between the exact results for

∫
xnc dx and the diffusive approxima-

tions of these same integrals. To take the first moment of the diffusion
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equation, multiply (6) by x and integrate from x = −∞ to x = +∞. Once
again, we use integration by parts and assume that terms such as xcx and c
vanish as x → ±∞. Thus we find that the center of mass is stationary

d

dt

∫ ∞

−∞
xc(x, t) dx = 0. (11)

The same result can be obtained by taking the first moment of the master
equation. The center of mass is stationary because in (2) we assume that the
PDF of displacements is symmetric.

Continuing, we come to the second moment. For the diffusion equation
we obtain

d

dt

∫ ∞

−∞
x2c dx = 2D

∫ ∞

−∞
c dx, (12)

where, as before, the terms which fall outside the integration by parts are
zero because of the rapid decay of c as x → ±∞. The student should show
that from the master equation∫ ∞

−∞
x2c(x, t + τ) dx−

∫ ∞

−∞
x2c(x, t) dx =

∫ ∞

−∞
∆2φ(∆) d∆. (13)

Recalling the definition of the diffusivity in (6), we see that in the limit
τ → 0 the difference equation in (13) can be approximated by the differential
equation in (12).

The law in (12), that the mean square displacement of a cloud of particles
grows linearly with time, is often taken to be the defining characteristic of
diffusion. As we will see later, there are dispersive processes which have
other power-laws, such as

∫
x2c dx ∝ t1/2. These processes are referred to as

“anomalous diffusion”.

2 Diffusion by continuous movements

2.1 Lagrangian time series

In 1922 Taylor [11] analyzed the diffusing power of a velocity field. The basic
concept here is that of a Lagrangian time series, such as the x-velocity of a
tagged fluid particle, u(t), as a function of time. This data is Lagrangian (i.e.,
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A time series of Lagrangian velocity

Figure 2: A time series with a spectral peak.

following a “float”), not Eulerian (i.e, obtained from a “current meter”). The
velocity time series might look like figure 2. Clearly there is some regularity:
evenly spaced maxima and minima are obvious, and we might guess that
there is a wave which is producing oscillatory displacements. At the same
time, the velocity is not completely predictable, and there is no obvious law
by which we can anticipate all details of the future using observations of the
past.

The simplest assumption we can make to analyze the process in figure
2 is that the velocity is statistically stationary. This means that average
properties of the velocity, such as the mean square velocity, are not changing
with time. In operational terms, the assumption of stationarity means that
if we take nonoverlapping and well-separated subsamples of the time series
in figure 2 then the statistical properties of the subsamples are identical.

If the time series is long enough we can chop it into N chunks, each of
length T . We define an ensemble average by considering each of the N chunks
as a single realization of a random process. This procedure introduces the
additional assumptions that there is a decorrelation time τ 	 T , and that
time averages are equivalent to ensemble averages. Thinking of dispersion,
Taylor imagined that each chunk was an independent particle, labeled n =
1, 2, ..., N , executing continuous movements. “Continuous” in this context
means that the velocity of particle n, un(t), is a relatively smooth function
of time, at least in comparison with the jittery motion in figure 1.

We denote the position of particle n by xn(t), so that if all the particles
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begin at x = 0 then

dxn

dt
= un(t), ⇒ xn(t) =

∫ t

0

un(t′) dt′. (14)

We use angular brackets 〈〉 to denote the ensemble average. As an example
of this notation, the average velocity of the N particles is

〈u〉 ≡ 1

N

N∑
n=1

un(t). (15)

Because of the stationarity assumption, 〈u〉 is independent of time, and we
can refer all displacements relative to the position of the center of mass by
writing x′ = x−〈u〉t and u′

n = un−〈u〉. To save decorating all our subsequent
x’s and u’s with primes we now assume that 〈u〉 = 0.

2.2 Taylor’s formula

The simplest measure of dispersion about the center of mass is the mean
square displacement, 〈x2〉. We can calculate the rate of change of this quan-
tity by first noting that:

dx2
n

dt
= 2xnun, and (14) ⇒ dx2

n

dt
= 2

∫ t

0

un(t)un(t′) dt′. (16)

We now ensemble average (16). Because of stationarity, 〈u(t)u(t′)〉 depends
only on the time difference t−t′. Thus, we introduce the correlation function

C(t− t′) ≡ 〈u(t)u(t′)〉, (17)

and, after a change of variables, write the ensemble average of (16) as

d〈x2〉
dt

= 2

∫ t

0

C(t′) dt′ . (18)

Equation (18) is Taylor’s formula, which relates the variance in particle dis-
placement 〈x2〉 to an integral of the Lagrangian velocity autocorrelation func-
tion C(t).

In the simplest situations the correlation function C(t) decreases rapidly
to zero as t → ∞ so that the integral in (18) converges. In this case, the
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dispersion of the ensemble at large times is characterized by a diffusivity
〈x2〉 ∼ 2Dt, where the diffusivity D is related to the correlation function by:

D =

∫ ∞

0

C(t) dt. (19)

In statistical physics, (19) is known as the Green-Kubo formula.
Taylor did not claim that turbulent dispersion was governed by the diffu-

sion equation, (6). We will return to this point later. For the moment notice
that (6) is an approximation valid only for sufficently long times that the in-
tegral in (18) has converged to the constant D. This restriction is related to
Einstein’s assumption that particle positions are observed at time intervals
τ which are much greater than the decorrelation time.

3 Diffusion and anomalous diffusion

In the previous sections we emphasized that the diffusion equation (6) is
only valid on times long compared to the decorrelation time τ , and only if
the concentration c(x, t) varies on length scales greater than the width of
the density φ(∆). These assumptions of scale separation in both time and
space are often not satisfied in real flows. Thus, dispersion experiments over
the last ten years have revealed behaviours which are much richer than those
suggested by the arguments of Einstein and Taylor. Experiments often show
that the growth of variance is described by a power law

〈x2〉 ∝ tξ. (20)

But sometimes ξ = 1 (diffusion), while in other cases ξ �= 1. If ξ �= 1 the
process is referred to as anomalous diffusion.

3.1 Rayleigh-Bénard convection

As an example of hydrodynamic diffusion (ξ = 1) and transient subdiffusion
(ξ = 2/3) we mention the experiments of Solomon and Gollub [9, 8] on the
dispersion of passive scalar (either methylene blue or uranine dye, or small
latex spheres) along a chain of Rayleigh-Bénard convection cells (see figure
3). We refer to the passive scalar generically as “tracer”.

Following the experimental procedure in figure 3, suppose that all of the
tracer is initially released in a single cell. The main question is: how many
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cells, N(t), have been invaded by tracer at time t? If this dispersive process
is described by diffusion then we expect that N(t) ∝ t1/2. With certain
interesting restrictions, this t1/2-law is the experimental result.

The Rayleigh-Bénard flow can be approximately described using a two-
dimensional and incompressible velocity field, (u, v), obtained from the stream-
function

ψ = k−1A sin [k (x + B sinωt)]W (z) , (u, v) = (−ψy, ψx) . (21)

The parameter A controls the amplitude of the flow, k = 2π/λ is the
wavenumber, and W (z) is a function which satisfies the no-slip boundary
conditions at z = 0 and z = H. The term B sinωt is a simple model of
the lateral oscillation of the roll pattern which results from an instability
which occurs when the convection is driven sufficiently strongly. Because
the flow in (21) is simple, highly structured and deterministic, this is not an
example of turbulent dispersion. Nonetheless, the experimental results can
be summarized using the notion of an effective diffusivity.

The Péclet number is

P ≡ A

kκ
, (22)

where κ is the molecular diffusivity of the tracer, is a nondimensional param-
eter which measures the importance of molecular diffusivity to advection.
The Péclet number can be considered as the ratio of the time it takes a
molecule to orbit around a convection cell to the diffusion time across a cell.
In the experiments described here, P is large and molecules make many cir-
cuits around a convection cell before Brownian motion jostles them through
a distance as large as k−1.

There are two cases which must be carefully distinguished:

Steady rolls The rolls are steady if either ω = 0 or B = 0 in (21). In either
case, tracer can pass from one roll to a neighbour only via molecular
diffusion. But, because molecules are advected through a distance k−1,
the dye is transported along the array of cells with an effective diffu-
sivity Deff ∝

√
Aκ/k � κ. Because Deff → 0 if κ → 0, the transport

is limited by molecular diffusion.

Unsteady rolls If B and ω are both nonzero then advection (rather than
molecular diffusion) can take particles through the time-averaged po-
sition of the cell boundaries. In this case, there is the possibility of
transport unlimited by weak molecular diffusion.
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Figure 3: Transport of uranine dye along an array of convection cells with kB =
0.12; time (from the top): 1, 2, 4 and 10 periods of oscillation. (Figure courtesy
of Tom Solomon [10].)

In the unsteady case, Solomon and Gollub show that trajectories of par-
ticles computed with the model streamfunction (21) are similar to the pat-
terns observed experimentally. In both the numerics and the experiments,
provided that ωB �= 0, the transport of particles along the array of cells (in
the x–direction) is due to chaotic advection in the neighbourhood of the roll
boundaries. This process is strikingly shown in figure 3.

A rough summary of the results is that in both the steady and the un-
steady cases the dye spreads via a one-dimensional diffusive process, ξ = 1
in (20), with a local effective diffusivity Deff . The number of invaded cells
is N(t) ∝

√
Defft. In the unsteady case Deff is independent of the molecular

diffusivity κ, while in the steady case Deff ∝ √
κ. The effective diffusivity

in the unsteady case is enhanced by 1 to 3 orders of magnitude over the
effective diffusivity of the steady case (which in turn is much greater than
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the molecular diffusivity, κ).
The summary in the previous paragraph omits many interesting details.

One of the more important caveats is that the effective diffusivity in the
steady case only describes the dispersion process at very long times:

N(t) ∝ t1/2 when t � 1

k2κ
. (23)

The time 1/k2κ is an estimate of the time taken for molecular diffusion to
transport tracer through a distance of order k−1, from the edge of a cell to
the center1. In this long time limit, the evolution of the tracer is slower than
the intracellular diffusion time 1/k2κ and consequently the concentration
is uniform within each roll. The concentration changes rapidly at diffusive
boundary layers (with thickness proportional to κ1/2) which are located at
the roll boundaries. The intercellular flux across these boundary layers is
responsible for the spread of the tracer from one roll to the next.

The scenario described above does not have time to become established
until t � 1/k2κ. When t 	 1/k2κ there is still a significant dispersion of
tracer through many cells which is described by the anomalous diffusion law

N(t) ∝ t1/3 when t 	 1

k2κ
. (24)

The anomalous process above relies on molecular diffusion passing tracer
quickly cross the cell boundaries before there has been time to reach the
center of newly invaded cells [3, 4, 13]. Thus there is a transient regime of
subdiffusion which preceeds the final asymptotic diffusive law in (23).

3.2 Anomalous diffusion in two-dimensional turbulence

Cardoso et al [2] conducted an experimental study of dispersion in a quasi-
two-dimensional turbulent flow. The experimental apparatus is a shallow
pan of fluid, 30cm by 30cm, and 3mm deep. The pan is filled with salty
water and flow is driven electromagnetically (E ×B forcing). The forcing is
arranged so that the basic flow is a square lattice of 30× 30 counter-rotating
vortices. This flow is almost two-dimensional because of the large disparity
between the horizontal dimensions (30cm) and the vertical dimension (3mm).

Although the forcing produces a regular array of vortices, this simple pat-
tern is unstable and a two-dimensional turbulent flow emerges. Visualization

1We assume that the aspect ratio of the cells is of order unity, kH = O(1).
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Figure 4: The trajectory of a single particle shows a sequence of long flights
interrupted by trapping events in which the particle circles around a vortex. The
vortex trapping events are indicated by the arrows. (Scanned from Cardoso et
al. [2])

of the turbulence, using tracer particles, shows that in the statistically equili-
brated state there is a population of vortices whose size is two or three times
the injection scale of the forcing. Each vortex emerges, moves, merges with
other vortices, and eventually disappears.

Cardoso et al [2] injected dye into this vortex mess and observed the two-
dimensional dispersion of the dye in the horizontal plane. To measure the
growth of the dye blob Cardoso et al defined

Rm ≡
∫ √

x2 + y2c(x, y, t) dx dy
/ ∫

c(x, y, t) dxdy , (25)
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and

Rg ≡
√∫

(x2 + y2) c(x, y, t) dx dy
/ ∫

c(x, y, t) dxdy . (26)

The experimental scaling law is

(Rg, Rm) ∼ t0.32±0.04 . (27)

The exponent 0.32 �= 1/2 indicates anomalous diffusion. Because the disper-
sion is slower than diffusion, this is subdiffusion.

By examining typical particle trajectories, such as the one in figure 4,
Cardoso et al explained the subdiffusive growth in terms of an interrupted
random walk. Consider a random walker who pauses between steps. The
length of the pause, τ , is a random variable; in the experiment of Cardoso et
al the pause is a trapping event in which a molecule is sequestered in the core
of a stationary vortex. If the average duration of a pause is well defined then
one can simply use Einstein’s formula (6) with τ replaced by the average time
between steps. However, if the pausing times are very broadly distributed
then the average duration of a pause may be infinite and consequently the
dispersion is subdiffusive. More details follow in the next section.

3.3 Random walk with pauses

Consider a random walk in which the walker pauses for a random time τ
between steps. The various τ ’s have a probability density function W (τ)
(the waiting time PDF). This PDF is normalised,∫ ∞

0

W (τ) dτ = 1 , (28)

and the average waiting time spent between steps is

τ̄ =

∫ ∞

0

τW (τ) dτ . (29)

Motivated by the experiments of Cardoso et al., we entertain the notion that
τ̄ is infinite because the integral in (29) diverges. For example, suppose that
for large τ , W (τ) ∼ τ−µ. Then τ̄ = ∞ if µ ≤ 2.
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However, if we only observe a finite number of steps, then we do not
sample the entire density W (τ). Specifically, suppose that after N steps, we
have experienced pauses of duration τ1, τ2, ..., τN . We want to estimate the
likely value of τmax(N) ≡ max{τ1, τ2, · · · τN}. The quantity τmax(N) is useful
because we can argue that the structure of W (τ) for τ > τmax(N) cannot be
significant for the displacement after N steps.

To determine τmax(N), we turn to probability theory. Consider a random
variable θ uniformly distributed in the interval [0, 1]. That is, the PDF of
θ is P (θ) = 1 if 0 < θ < 1 and P (θ) = 0 otherwise. Suppose we take N
samples, θ1, · · · , θN and define θmin(N) ≡ min{θ1, · · · , θN}. In this simple
case it is plausible that θmin ∼ N−1 as N → ∞.

Now the trick is to use θ to represent τ : we write θ = τ p, and adjust p so
that the power–law tail of W (τ) ∼ τ−µ corresponds to the simple structure
of P (θ) = 1. In fact,

P (θ) = W (τ)

∣∣∣∣dτdθ
∣∣∣∣ , ⇒ 1 ∼ τ 1−µ−p , (30)

or p = 1 − µ. Because the minimum value of θ maps to the maximum value
of τ , it follows that

τmax(N) ∼ N1/(µ−1) . (31)

Now we return to (29) to estimate the effective average pause time after
N pauses:

τ̄eff =

∫ τmax

0

τW (τ) dτ ∼ τ 2−µ
max . (32)

It is also plausible that the total time t spent on this random walk is given
by

t ∼ Nτ̄eff . (33)

Combining (31), (32) and (33) yields the following scaling relationships:

N ∼ tµ−1 , τ̄eff ∼ t2−µ , τmax ∼ t . (34)

The final relation is worthy of comment: it implies a form of self-similarity
of the random walk.
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To conclude, the total displacement of our random walk is proportional
to

√
N . But, with the random pauses, the scaling against time has been

altered to

RMS displacement ∝
√
N ∼ t(µ−1)/2 . (35)

This theory can be used to interpret the experiment of Cardoso et al: because
the RMS displacement grows as t1/3 it follows that µ ≈ 5/3. Cardoso et al.
successfully tested this prediction by measuring the PDF of trapping times
inside vortices.

4 Stirring and mixing

4.1 Coffee and cream

Appealing to the everyday experience of mixing cream into coffee, Eckart
[5] argued that the homogeneization of two fluids occurs in three stages.
The distinction between the stages is the value of the concentration gradient
averaged over the domain.

Initial : there are distinct interfaces separating globules of cream and coffee.
Within each globule, the concentration of cream is nearly constant
and the concentration gradient is close to zero. There is a very large
concentration gradient between regions of coffee and cream. But the
interfaces between coffee and cream are small in number and not of
great area, so the average gradient in the coffee mug is small.

Stirring : the cream is mechanically swirled and folded, and molecular dif-
fusion is unimportant. During this second stage the concentration gra-
dients increase.

Mixing : the gradients suddenly disappear and the fluid becomes homoge-
neous; molecular diffusion is responsible for the sudden mixing.

In a chemical reaction, molecules of different species must come into contact
for the reaction to occur. Thus, when the species are initially separated, the
reaction will not begin until the final mixing stage is reached. In this sense
there is an important distinction between coarse-grained homogeneization,
occuring solely as a result of stirring, and mixing at the molecular scale.
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t=1 t=2 t=4

t=8 t=16 t=32

Figure 5: Solution of ct + (1 − r2)cθ = (8 × 10−4)∇2c. The initial condition is
c(x, y, 0) = x.

To illustrate these concepts figure 5 shows a solution of the advection
diffusion equation

ct + (1 − r2)cθ = κ∇2c, c(r, θ, 0) = r sin θ (36)

where κ = 8 × 10−4. A particle at a distance r from the origin completes
a rotation in a time 2π/(1 − r2). Thus particles at smaller values of r will
overtake particles at larger values of r and so the concentration is twisted
into spirals by differential advection (stirring).

The increase in gradient during the stirring phase is evident in the figure.
But at approximately t = 16, mixing starts to dominate, and diffusion rapidly
reduces the average gradient. From the initial condition, an estimate of the
time it would take unassisted diffusion to homogenise the fluid is TD ∼ 1/κ =
1250. It is only through the initial process of stirring that the concentration
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gradient is amplified or, alternatively, that the spirals are stretched out so
that small diffusion homogenizes the tracer at t = 32 	 TD.

4.2 A straining flow

A simple example of a two-dimensional flow which amplifies concentration
gradients is the hyperbolic strain shown in figure 6. The streamfunction is
ψ = −αxy and so the advection diffusion equation is

ct + αxcx − αycy = κ∇2c . (37)

Notice the dimensions here: α−1 has dimensions “time” and κ has dimensions
(length)2/(time). From these two quantities we can build a combination with
the dimensions of (length):

( ≡
√

κ

α
. (38)

The length ( will appear prominently in the sequel.
We begin our discussion of hyperbolic strain by obtaining a solution in

which c is independent of both x and t. In this special case the solution of
(37) is

cy = A exp

[
− y2

2l2

]
, c(x,±∞, t) = ±

√
2πA(. (39)

The concentration profile is the error function shown in figure 7. The solu-
tion shows the steady state balance between advection and diffusion: with√

2πA( = 1, the concentration c changes smoothly between c = +1 as
y → +∞ to c = −1 as y → −∞. The transition occurs in a front of
width (.

We can give an intuitive discussion of how the steady state profile in
figure 7 is established as the solution of an initial value problem. Suppose
we had started with the initial condition such as c(x, y, 0) = sgn(y) in which
the transition between c = −1 and c = +1 occurs in a distance much less
than (. Then the discontinuity in c initially diffuses freely, growing like

√
κt.

Once the width of the front becomes comparable to (, that is when

√
κt ∼ (, ⇒ t ∼ α−1 , (40)
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Figure 6: The straining flow described by the streamfunction ψ = −αxy. The
figure shows how a circular patch of tracer is stretched out along the x–axis by the
hyperbolic strain. If κ = 0 the major axis of the ellipse grows as exp(αt) and the
minor axis reduces as exp(−αt) so that the area remains constant.
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The erf solution

Figure 7: The time independent error function solution to equation (37).
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the spread is arrested and the steady state in figure 7 is established.
On the other hand, we can also consider an initial condition in which the

transition between c = 1 and c = −1 occurs on a scale L0 � (. In this case
the front is initially compressed by the hyperbolic strain so that the width
is reduced exponentially, L = L0 exp(−αt). Because L0 � ( the diffusion is
unimportant until the exponential reduction in scale reaches (. That is,

L0e
−αt ∼ ( , ⇒ t ∼ α−1 ln(L0/(). (41)

These considerations illustrate fundamental importance of ( as the scale on
which advection and diffusion come into balance.

4.3 Lagrangian coordinates: a simple example

The hyperbolic strain also provides a painless illustration of some mathemat-
ical techniques which can be used in more complicated problems. We begin
by considering the solution of (37) with κ = 0. With no diffusion c is tied to
fluid particles. The position of a fluid particle is related to its initial position
(a, b), by solving the differential equations

(ẋ, ẏ) = α(x,−y), ⇒ (x, y) =
(
eαta, e−αtb

)
. (42)

The solution of (37) can now be obtained by arguing that the particle which
is at the point (x, y) at time t began at (a, b) = (exp(−αt)x, exp(αt)y) at
t = 0. Because the a particle carries the concentration it follows that the
solution of (37) as an initial value problem is

c(x, y, t) = c0 [exp(−αt)x, exp(αt)y] , (43)

where c0(x, y) is the initial condition. The philosophy of this method is that
we care where fluid particles come from, but not where they are going to.

The solution above seems to rely crucially on the restriction that κ = 0.
But now look what happens if we use the Lagrangian coordinates (a, b) in
(42) as new independent variables in (37). As an accounting device, it is
comforting to define τ = t and consider that ∂τ as the time derivative with
(a, b) fixed. Thus the transformation rules are

(∂x, ∂y) =

(
∂a

∂x
,
∂a

∂y

)
∂a +

(
∂b

∂x
,
∂b

∂y

)
∂b =

(
e−ατ∂a, e

ατ∂b

)
. (44)
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and

∂t =
∂τ

∂t
∂τ +

∂a

∂t
∂a +

∂b

∂t
∂b = ∂τ − αa∂a + αb∂b. (45)

The punchline is that

∂t + αx∂x − αy∂y = ∂τ , (46)

which shows that the change to a Lagrangian description makes the convec-
tive derivative trivial.

Substituting the transformations above into (37) gives:

ct = κe−2αtcaa + κe2αtcbb. (47)

Naturally, if κ = 0, we recover our earlier solution in (43). But even if κ �= 0
it is often easier to solve (47) than the Eulerian form in (37). For example,
Fourier transforming (47), with (∂a, ∂b) → i(p, q), gives a simple ordinary
differential equation in time.

It is instructive to use the method above to solve (37) with the initial
condition

c(x, y, 0) = δ(x)δ(y) . (48)

Physically, this is a spot of dye released in a straining flow. When αt 	 1
the spot spreads diffusively, with a diameter which grows as

√
κt. However

when αt ∼ 1 the diameter of the spot becomes comparable to ( ≡
√

κ/α,
and then the spot stops expanding against the compressive direction of the
strain. However the spot continues to stretch along the extensive direction.
Thus, when αt > 1, the spot becomes a filament with an equilibrium width
of order ( and an exponentially growing length. These intuitive arguments
are supported by the exact solution:

c(x, y, t) =
1

4πfg
exp

[
− x2

4f 2
− y2

4g2

]
, (49)

where f(t) and g(t) are

f 2 ≡ κ

2α
(e2αt − 1) , g2 ≡ κ

2α

(
1 − e−2αt

)
. (50)

Notice that the peak concentration ultimately decreases like e−2αt.
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Figure 8: The mean square of the concentration gradient. If k� 	 1 then the
concentration gradient grows until t = t∗ in (54) and then decreases precipitiously.
If k� ≥ 1/2 then diffusion always overpowers strain and the mean square gradient
decreases monotonically to zero.

4.4 An example of sudden mixing

As a final look at the hyperbolic straining flow, we note that a solution of
(37) is

c(x, y, t) = A(t) cos(ke−αtx) cos(keαty), (51)

where

A(t) = exp
[
−(2k2 sinh 2αt

]
. (52)

One route to this exact solution is to look for separable solutions of (47),
and then transform back to the Eulerian coordinates (e.g., Young, Rhines &
Garrett,1982).

The mean value of the square of the concentration gradient varies with
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time as:

{∇c·∇c} =
k2

2
cosh(2αt) exp

[
−2(2k2 sinh(2αt)

]
, (53)

where {} denotes an average over a large area. {∇c·∇c} is plotted in Fig-
ure 8 for various values of k(. Recalling Eckart’s description of stirring as
increasing the concentration gradient, and mixing as decreasing the concen-
tration gradient, we can see the transition between the two phases occurs at
the peaks of the various curves. If k( 	 1, then the time it takes to reach
this peak is given by t∗, where

αt∗ ∼ − ln(k(). (54)

Once again, this is the time taken for the exponential factor e−αt to reduce
initial length of the tracer field, k−1, down to the length ( on which strain
and diffusion balance.

4.5 A Welander scrapbook

Stirring was beautifully illustrated in a 1955 paper of Welander’s [12]. This
paper is notable also because of its discussion of the importance of coarse-
grained averages. Figures 9, 10 and 11 reproduced from Welander (1955)
show that simple velocity fields produce spectacular distortion of passive
scalars.

In figures 9, 10 and 11, some dimensions of the scalar blob are stretched
out while other dimensions are contracted. Batchelor (1952) [1] argued that
in turbulent flows random stretching results in an exponential growth of
the separation between two initially adjacent fluid elements. That is, if we
consider two material elements separated by a distance s0 which is much less
than the scale of the velocity field, then Batchelor argues that the separation
grows as

s ∼ s0e
γt . (55)

The time-scale γ−1 is analogous to α−1 in (37), though in figures 10 and
11 the exponential straining is driven by a random and unsteady velocity,
rather than the simple hyperbolic field in figure 6. Note particularly that the
exponential law in (55) is valid until the separation s(t) becomes comparable
to the length scale over which the velocity varies.
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Figure 9: Welander’s numerical solution illustrating differential advection by a
simple velocity field. A checkerboard pattern is deformed by a quasigeostrophic
barotropic solution which models atmospheric flow at the 500mb level. The initial
streamline pattern is shown at the top and the subsequent figures are at 6 hours,
12 hours, 24 hours and 36 hours, respectively. Notice that each square of the
checkerboard maintains constant area as it deforms.
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Figure 10: Welander’s experimental illustration of the deformation of a small
coloured square element of a fluid surface. To suppress three dimensional tur-
bulence, a vessel of water is brought into solid body rotation. A floating film of
butanol is divided into square elements by means of a metal grid and one of these
square elements is coloured with methyl-red. The solid body rotation is disturbed
by stirring the water and the grid is removed.
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Figure 11: Further deformation of the butanol square in figure 10. According to
Batchelor [1], the length of the filaments increases exponentially with t.
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