
1. Introduction
Pancake structures found in the terrestrial 
equatorial stratopause are considered to be an 
inertial instability phenomenon (Hitchman et al., 
1987; Hayashi et al., 1998). This disturbance 
clearly shows a non-symmetric structure on 
horizontal plane (right red rectangle in Fig. 1). 
However, so-called “ inertial instability“ is a 
symmetric instability in rotating system. 

Fig. 1. Anomalies of the temperature (Left: vertical structure, Right: 
horizontal structure) in equatorial stratopause from the data of satellite,UARS.

2. Recent Investigations & Our Motivations
In theoretical studies, linear stability problem for zonal symmetric flow on an equatorial beta-plane is solved 
by Boyd and Christdis (1982), Stevens (1983),  Dunkerton (1983). These studies have shown that 
• the condition for symmetric disturbances is derived.
• non-symmetric disturbances dominate symmetric disturbances.
However, it has not been well examined whether non-symmetric instability correspond to symmetric inertial 
instability. Then, the purpose of our study is follows:
• To investigate unstable mode for wide parameter range 
• To examine the physical mechanism of non-symmetric and symmetric unstable modes. 
• To discuss whether the non-symmetric unstable modes have the same mechanism as symmetric 
inertially unstable modes.

3. Approach
We firstly solve the linear stability problem. Next, dispersion relations of modes are examined from the 
viewpoint of resonance between neutral waves (Cairns, 1979; Hayashi and Young, 1987; Iga, 1999). 

4. Configurations &  Equations

Fig. 2. Dispersion curves on (k-Cr)- and (k-kCi)-planes. From Hayashi and Young (1987).

The concepts:
A) Instability is caused by resonance between the wave with positive 

pseudomomentum and the wave with negative pseudomomentum (Cairns, 1979). 

B) The sign of the pseudomomentum M of neutral modes is determined by the 
gradient of dispersion curve (k-Cr), that is, dCr/dk<0 (dCr/dk>0)  M>0 (M<0) 
(Iga,1999a). 

C) Continuous modes have pseudomomenta with opposite sign to the gradient of the 
potential vorticity of basic flow by Iga (1999b).

We use non-dimensional shallow water equations on an equatorial beta-plane.
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Fig. 3. A basic state and inertially unstable region.

A. Non-symmetric unstable region (-1.0 < log E < 1.2)

A.3 For larger value of log E case

A.4 Identification of the dispersion curves buried among 
continuous modes (Part 1)

A.5 Identification of the dispersion curves buried among continuous 
modes (Part 2)

B. Non-symmetric modes dominate case (1.2 < log E < 2.0)

• Boundary Condition: 
• Basic state: linear shear flow:

• Zonal wavenumber range: 
• Range of E:

5. Result (Summary)  ー Classification of unstable modes

Fig. 4.  Non-dimensional growth rate as a function of k and log E. Green circle indicates the most unstable mode for each log E.

Fig. 5. Dispersion curves of neutral and unstable modes at log E= -0.90. Single and double open circles indicate 
unstable modes and the most unstable modes, respectively.

Fig. 6. Horizontal structures of modes 
leading to the most unstable modes 
for log E = -0.90. 
(a) equatorial Kelvin mode with 
k=0.01, c≒5.30, (b) continuous 
modes with k=0.01, c≒4.90. 
Contours and vectors indicate φ and 
the velocity field, respectively. 
Contour intervals are (a) 0.50, (b) 
0.12. Dashed contours correspond to 
negative values.
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A.1 Dispersion curves

A.2 Neutral waves leading to instability

For larger value of E, 
dispersion curves of the most 
unstable modes are buried in 
continuation mode. 
Identification of neutral 
modes becomes impossible by 
the previous method. 

Fig. 7. Same as Fig. 5, but for 
log E= -0.90 to 0.10. 

Fig. 8. Approximate dispersion curves of equatorial Kelvin wave modes (blue line) and numerically obtained 
dispersion curves. Values of log E are (a) -1.10, (b) -0.40, and (c) +1.10.  Single and double open circles 
indicate unstable modes and the most unstable modes, respectively. 

By applying Iga(1999), we solve eigenvalue problems where part of the basic flow is distorted and extract 
equatorial Kelvin modes directly from continuous modes into which equatorial Kelvin modes assimilate.

Fig. 9. Basic flows with uniform velocity regions (a), (d), and the resulting dispersion curves (b), (e). (c) shows the structure 
of neutral mode in blue rectangle of  (b). Contours and vectors indicate φ and the velocity field, respectively in (b). 
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C. Connection of non-symmetric modes to inertially unstable 
modes

B.2. To identify Mixed Rossby-Gravity modes

In the neighborhood of log E = 1.0, 
the dispersion curves of the most 
unstable modes intersect that of 
westward mixed-Rossby gravity 
modes. 

Fig. 10. Same as Fig. 5, but 
for log E = 0.90 to 1.40. 

We derived approximate dispersion relations 
of equatorial waves in linear shear flow in 
shallow water on an equatorial beta-plane with 
uniform Γ－plane approximation (Boyd,  
1978) and with modified basic flow involving 
in advection term same as Kelvin modes (in 
detail, see Taniguchi and Ishiwatari, 2006). 
Analytical dispersion curves on the numerical 
calculation result is in Figure 11.

The unstable mode of k=0 certainly exists on the dispersion curve of 
the most unstable mode caused by the resonance between equatorial 
Kelvin modes and westward mixed Rossby-gravity modes. Although 
not shown here, it also confirmed that the approximate complex
frequency of this non-symmetric unstable modes given by Γ－plane
approximation, coincides with that of symmetric modes on the limit of 
k close to 0. Therefore, it is identified that non-symmetric unstable 
modes in the range of 1.00≦log E≦2.00 can be considered to be 
same kind of instability as the inertially unstable modes.

In order to identify the dispersion curves of equatorial Kelvin 
modes, we derive approximate dispersion relation of modes.
With these approximation,                 (for applying to equatorial 
Kelvin wave), modified basic flow involving in advection 
term:                                                        , where u with tilde is 
set to be the velocity of basic flow at the dynamic equator, 2.5. 

Fig. 11. Approximate dispersion curves (purple, light blue, and blue lines) and numerically obtained dispersion curves for 
log E = 1.00. 

As log E becomes large, resonance between equatorial Kelvin modes and westward mixed Rossby-gravity modes 
occurs at smaller zonal wavenumber region (not shown). At log E=1.20, that resonance occurs at all zonal 
wavenumber region except for k=0.

Fig. 12. Same as Fig.5, but for log E = 1.00 on (k, ωr)-plane. 

B.1 Dispersion curves

Neutral modes appear successfully Neutral modes does not appear.
Resonance between two neutral modes ?

Kelvin + W-MRG resonance (k≠0)

Inertially unstable mode (k＝0)

Dispersion curves of 
westward mixed Rossby-gravity modes

Inertially unstable modes are caused by resonance between equatorial 
Kelvin modes and westward mixed Rossby-gravity modes．


