Magnetic Rossby waves in the Earth’s core
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Waves in the Earth’s fluid core

Waves provide us with information about the ‘invisible’ system

* torsional Alfven waves (e.g. Braginsky 1967, zatman & Bloxham 1997)
— axisymmetric, travelling in radius s
— ~6yrstraveltime: Bs >~ 2 mT (Gillet et al. 2010, 2015)

e axisymmetric MAC oscillations (e.g. Braginsky 1993)

— in a thin, stably stratified layer at the top of the core?
— ~ 60 yrs geomagnetic variation: H ~ 140 km? (Buffett 2014)

* slow magnetic Rossby waves (e.g. Hide 1966, Acheson 1978)
— nonaxisymmetric, travelling in azimuth ¢
— ~300yrs westward drift: By ~ 10 mT? (Hori et al. 2015)

» (fast magnetic) Rossby waves in a thin stable layer (e.g. Braginsky 1984)
— ~6yrs westward drift? (Chulliat et al. 2015)
— in the solar tachocline also?: ~ 2 yrs westward? (Mclntosh et al. 2017)



An axisymmetric mode: torsional Alfven waves

A

A special class of Alfven waves rotaton s —C_|
(Braginsky 1970; also Roberts & Aurnou 2012) ——

— the azimuthal momentum eq on cylindrical
surfaces in the magnetostrophic balance
gives a steady state (Taylor 1963) |

— cylindrical perturbations on the state \
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» travel in radius s with the the z-mean
Alfven speed U, = (<B.2>/<p>p,)Y?




An axisymmetric mode: torsional Alfven waves

U¢ in a core flow model inverted from

e A special class of Alfven waves the geomagnetic variation gufm1

(Braginsky 1970; also Roberts & Aurnou 2012) : b e 47 /ﬂV// /
— the azimuthal momentum eq on cylindrical  os
surfaces in the magnetostrophic balance =
gives a steady state (Taylor 1963) g
— cylindrical perturbations on the state :‘; 04
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» travel in radius s with the the z-mean 1955 1960 1965 1970 1975 1980 1985
= 2 1/2 Time (years)
Alfven speed U, = (<B2>/<p>p, )Y

* Data:

— probably responsible for 6-7 year variations
» can account for the 6 year LOD change
— the observed wave speed is used to infer
the field strength within the core
» <Bs2>Y2>2mT

» better fits with the scaling law

B r.m.s. (mT)
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(Glllet et al. 2010) Cylindrical radius



Nonaxisymmetric waves in the core?

Possibly related to the geomagnetic westward drift

— the nonaxisymmetric part of the field moving in azimuth
* significant in the Atlantic hemisphere: period ~ 3*102 yrs

probably a mixture of flow advection (Bullard+ 1950) and wave propagation (Hide 1966)

Nonaxisymmetric part of Br

- How can we separate the signal due to waves?

at the surface of the core

(gufm1:

at the equator / 40° S
Finlay & Jackson 2003)
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Magnetic Rossby waves

Key ingredients (Hide 1966; Acheson 1978; also Hori et al. 2015).

— axial vorticity equation in a quasi-magnetostrophic

balance (A=0(1); Ro, E<<1)
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coupled with the induction equation
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— spherical geometry (topographic f—effect)
— almost independent of z (quasi-geostrophic)
— azimuthal length scales shorter than radial ones

Dispersion relations about a mean flow:
with a form of ei(m¢-ot)

1 1 2

Uy = Wg |z =4/1+4H

W = @R 5 Eo\P A
where Rossby and Alfven frequencies
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Magnetic Rossby waves (cont’d)

Fast modes:
— 0+ > + g (1+ o/ ®g?) in the limit ®2/mg? << 1
— essentially (honmag) Rossby waves (Busse 1986)

— travelling progradely (eastward) with timescales

of O(months) in the fluid core

Slow modes:

— - -oy/ogin the limit ®2/mg? << 1

. 30,2 2\ 32
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— travelling retrogradely (westward) along the
toroidal field B, on timescales of 0O(10? years)

e cf. torsional Alfven waves along Bs
— highly dispersive
— the governing equations (Cartesian)
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(Hori, Takehiro & Shimizu, 2014)



Waves hint at strong-field dynamos?

* Linear, rotating magnetoconvection
(e.g. Chandrasekahr 1961, Fearn 1979; also Zhang & Schubert 2000):
— as magnetic field is strengthened to A=0(1), the
thermal stability Ra_., the preferred wavenumber

k.., and wave frequency o, drop

— dynamos hypothesized in the regime:
‘strong-field’ dynamos (e.g. Roberts 1978)

— Note: all three effects not necessarily

Flow vigor

* depend on the background magnetic |’ "o =4

field, boundary conditions, etc.
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Waves hint at strong-field dynamos?

* Linear, rotating magnetoconvection
(e.g. Chandrasekahr 1961, Fearn 1979; also Zhang & Schubert 2000):
— as magnetic field is strengthened to A=0(1), the
thermal stability Ra_., the preferred wavenumber
k.it, and wave frequency o, drop

D E=10° Ra=2x10’

crit
— dynamos hypothesized in the regime:
‘strong-field’ dynamos (e.g. Roberts 1978)

— Note: all three effects not necessarily

* depend on the background magnetic
field, boundary conditions, etc.

* Convection-driven spherical dynamos likely ) / -_
approaching the regime (e.g. vadav et al. 2016; Dormy 2016) dynamo
— force balances .« ;‘-
— flow properties? (vigor/heat transfer/subcriticality, ,\,‘; " { ﬂ
azimuthal length scales, and wave time scales) Gl l
* cf. plane layer models Radial velocity in the equatorial plane

at E = 106, Ra/Ra, = 10, Pm/Pr = 0.5
(Yadav et al. 2016)



Convection-driven, spherical dynamo simulations

Greatly studied for the past decades (e.g. Glatzmaier & Roberts 1995; Kageyama & Sato
1995; also reviews by Christensen & Wicht 2007; Jones 2011)

— successful for reproducing observed features of planetary magnetic fields
— atool for understanding the dynamics with self-generated magnetic fields

MHD dynamos driven by Boussinesq convection in rotating spherical shells:
— Governing equations (dimensionless)
ou Pm Pm’Ra

oT Pm
— 4u-VI = —VT-1
5 +u-V Prv

0B

E = V X (’U, X B) -+ VZB
— Parameters: modified Rayleigh, Ekman, kinetic/magnetic Prandtl numbers

D5
Ra:ga‘e‘ , b= 1/27 PT':Z, szz
VK QD K n
~ 16 Ra =10%-10° =1 =1-5

crit

— Leeds spherical dynamo code: based on pseudo spectral method (e.g. Jones et al. 2011)



Slow MR waves in dynamo simulations

z-mean radial velocity <u >

 Slow modes identified: in the equatorial plane

— retrograde drifts commonly seen in
dynamo simulations

— their speeds accounted for by total
phase speeds of wave and mean flow
advection, (oyg+ ®,4,)/mM, where

X 3, m3(r2 — .52)<B§>
WMR = T W - 2 0 4
R PHO%ES <ug> at s=0.5r,
g, = Cm = (Ug) - 0.006 \, "W 1.58+03
o s = . : 1.0E+03
. o . — ((DMRbn—-'g +(D d )/ - 1
— 2D spectral analysis is crucial to & 0.004 i ) o T ERL e
distinguish each component S ' | 0 0E+00
E 0.002 { L B 50E+02
* Note: wave contribution £ j i I L orans
. = i ! '
depends on the radius s 0.000 @) | R
. : 5.4 4./ 6.28
— wave ~< advection at larger s Azimuth / radian

at E=10"% Pm/Pr=5,Ra/Ra,=8 & A ~ 22
(Hori, Jones & Teed, 2015)



Slow MR waves in dynamo simulations

z-mean radial velocity <u >
in the equatorial plane

Slow modes identified:

— retrograde drifts commonly seenin
dynamo simulations

— their speeds accounted for by total
phase speeds of wave and mean flow

advection, (oyg+ ®,4,)/m, where
X 3, m3(r2 — .5'2)(Bg>
wMR = —— = —
WR 2ppofdst
~  (Uy
Wady = (M = < d)> m

S
— 2D spectral analysis is crucial to
distinguish each component

Note: wave contribution
depends on the radius s

— wave ~< advection at larger s
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Exploring more cases

: E=5*10%, Pm=2, Ra/Ra, = 16
* MR waves were found in models & A ~6
when torsional waves were 0.010 SN D [ 4E10S
e \ ] | 9.5E+02
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Nonlinearity on waveforms?
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waves in weakly nonlinear,
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The role of nonlinear Lorentz force

Coriolis and Lorentz terms are

dominant in the axial vorticity eq.

— Reynolds term remains minor

The Lorentz term =, can be

expanded, in terms of the mean

and fluctuating parts, as

Pmr = -/ ! ./
= (B -Vi) + - Vi)

—
=7, = ——0—

E
+ (other terms) ]

— first term for the restoring force

— second term for the leading
nonlinear part

The sum of the dominant
restoring and nonlinear terms
reproduces steepened shapes
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(Hori, Teed & Jones 2017)
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Toroidal field strength within the Earth’s core

The dispersion relation tells us about
waves riding on mean flow advection

m3(r? — 52)(§§)

2pp10€2 s4

WMB = W — Wadv = —

— a geomagnetic drift speed of
0.56 9/yr at 402 S (Finlay & Jackson 2003)

— suppose a mean flow of 0.24 2/yr
(Pais et al. 2015)

— Given m=5, this implies a z-mean
toroidal field B¢ ~ 12 mT at s ~ 0.8r,

* equivalent to, or stronger than, the
poloidal field Bs > 3 mT (Gillet et al. 2010)

— constrains the dynamo mechamism?
* e.g. o’-type or oo -type

» stronger poloidal fields in dynamo
simulations
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(Hori, Jones & Teed, 2015)



In thin, stably stratified layers

 Astable layer at the top of the Earth’s core

— SW models applied by poloidal field (Braginsky
1984, 1999)

e Solar tachocline at the bottom of the
convection zone

— SW models applied by toroidal field
(Gilman 2000; Zagarashvili et al. 2007)

— ~ 3 m/s westward drifts and eastward
wavetrains? (Mcintosh et al. 2017)

d AIA/EUVI BP density (northern hemisphere)

Coronal brightpoints in Jan 2012 o _j h,-' o
& ataround 15° N/22° S ' ? ;
(MclIntosh et al. 2017)

Time (year)

AIA/EUVI BP density b AIA/EUVIBP density
Hovmoller Hovmoller
(southern hemisphere)

Carrington longitude (degrees)  Carrington longitude (degrees)

(99.39p Jad sdg) Ajsuap dg



e.g. equatorial waves (cartesian)

* [3-plane shallow water models applied by an azimuthal field

Ouy B, 0b,  Oh ob, ou, O0b, ou,
— fuy = ~ g5 =By, — =B/,

ot 4o Ox 0x ot ox’ Ot O0x

u, B, db,  Oh Oh (ém Buy)

— 4+ M)C — + O,

ot 4rp Ox 8y ot dx  Jy

* when f~ By,

d2uy WZ 2 UA :(:ﬁ 62 2
iz [@‘k ( 03) T (- k22 )w?)  CR(1— k2R W)’ ] o

— cf. nonmagnetic case (e.g. Matsuno 1966) .
* a Schroedinger eq.
* oscillatory for |y| <y, i.e. equatorially trapped waves
— In the presence of magnetic field
* nonzero V, increasesy,, i.e. releasing the trapped waves
* large V, gives rise to a Bessel eq.



In spherical shells

Nonaxisymmetric MAC waves classified:

— inertio-gravity

— Rossby
— Kelvin

Rossby: for eq.symmetric B¢ = BO sin O

(Marquez-Artavia et al., 2017)

— fast modes

e goes westward

* inthelimitV,,2/V2<<1, o = __Klom_
n(n+ 1)
— slow modes
e goes eastward 5
* inthelimitV,2/V2<<1l, w= s (n(n+1) —2)
R TN

e slowly westward for n=m=1

— even polar trapped at large V,,?/V 2

— become unstable at large V,,2/V_2

Eigenfunctions of fast / slow MR waves ~ - - : . :
for m=1, o (~Vy2V2) = 0.1, &' (~ V,2/V2) = 0.01 -2 - 0 1 2




Summary

* Geo-/Jovian dynamo simulations are supporting the
excitation of magnetic Rossby waves for incompressible/
anelastic fluids

— crests/troughs going retrogradely on timescales of O(10%2 yrs)
in the Earth’s core, about mean zonal flows

— excited when torsional Alfven waves were excited
 for strong-field dynamos (Pm >=5 or E =< 104; A >~ 2)

— the speeds accounted for by the linear theory, but their
waveforms steepened, likely due to nonlinear Lorentz terms

— their speeds potentially revealing the strength of the ‘hidden’
toroidal field

— induced by topography but also by compressibility



Thank you



QG vs. non-QG modes

In spheres (n,m)=(18,8
— e.g. for Malkus field (1967)

— the solution, P=P_™(u) P,™(u)
— equatorially trapped for for small n

— even (n-m): eq.symmetric (QG) modes

» goes retrograde & faster (= —coMz/coB)
— odd (n-m): eqg.anti-symmetric modes

» goes prograde & slower (= +m,,%/®,)

— cf. MC waves in simple plane layers

* slow modes has no preference in propagation
direction (= £ wm)%/®.)

* The geometrical effect splits the modes into a
faster & slower ones

-1 -0.5 0 0.5 1

Eigenfunctions for Malkus field (after Malkus 1967)



