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Section 5.

How numerical dynamo models are constructed
and what they produce

5.1 Spherical geodynamo models
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Spherical geometry Boussinesq dynamo models

Model for the geodynamo.

Spherical shell rotating about
z-axis. Gravity radially inward,
g = g0r . Centrifugal acceleration
small. Length scale d is
gap-width from inner to outer
boundary. Convection onsets
outside tangent cylinder.

Tangent cylinder (TC) is imaginary cylinder touching the inner
core. Convection columns inside the TC are divided.

Boussinesq fluid. Sometimes consider basal heating through the
inner core boundary (ICB), sometimes internal heating.
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Spherical dynamo equations

Du

Dt
+ 2Ω× u = −∇p +

1

ρ
j× B + ν∇2u + g0αθr, (5.1.1)

∂B

∂t
= η∇2B +∇× (u× B), (5.1.2)

∂θ

∂t
+ u · ∇θ = κ∇2θ + β(r)ur + H, (5.1.3)

∇ · B = ∇ · u = 0, µj = ∇× B. (5.1.4, 5, 6)

β(r) - Basic state temperature profile, H is heat source in the core.
No-slip and stress-free boundaries considered, but assume θ = 0
there.
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Basic state in dynamo models

Basic state temperature satisfies

κ∇2T̄ + H = 0, κ
1

r2

d

dr
r2 dT̄

dr
+ H = 0, (5.1.7)

so

T̄ = C1 +
C2

r
− Hr2

6κ
(5.1.8)

where C1 and C2 are determined by the boundary conditions on T ,
e.g. for constant temperature boundaries T̄ = Ti at r = ri and
T̄ = Ti −∆T at r = ro .

Then the temperature gradient β(r) = −dT̄/dr . The full
temperature T = T̄ + θ, so fixed temperature boundaries have
θ = 0 at both boundaries. Alternatively, fixed flux conditions have
−κdT̄/dr = F a prescribed flux, and then dθ/dr = 0.
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Dimensionless equations

Non-dimensionalise with d = ro − ri as unit of length, d2/η as unit
of time, (Ωρηµ)1/2 as the unit of magnetic field, κ∆T/η as unit of
temperature, or Fd/κ in fixed flux case.

E

Pm

Du

Dt
+ 2ẑ× u = −∇p + j× B + E∇2u +

ERaPm

Pr
θr, (5.1.9)

∂B

∂t
= ∇2B +∇× (u× B), (5.1.10)

∂θ

∂t
=

Pm

Pr
∇2θ − u · ∇θ + β(r)ur , (5.1.11)

∇ · B = ∇ · u = 0, j = ∇× B. (5.1.12, 13, 14)

β(r) - Basic state temperature profile. No internal heating
assumed here.
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Dimensionless parameters

Ekman number E = ν/Ωd2, Core value ∼ 10−15.

Rayleigh number Ra =
g0αβd3

νκ
, Core value very large.

Prandtl number Pr = ν/κ, Core value ≈ 0.1.

Magnetic Prandtl number Pm = ν/η, Core value ∼ 10−5.

η magnetic diffusivity, ν kinematic viscosity,

κ is the thermal diffusivity, d = ro − ri .

Even if the molecular diffusivities are enhanced by turbulence
E ∼ 10−9.

Typical simulation values are Pm = Pr = 1, E = 5× 10−5, small
but not so small as to make numerical simulation inconvenient.
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5.2 Pseudo-spectral method for Boussinesq equations
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Poloidal-Toroidal expansion

Poloidal-Toroidal decomposition

u = ∇× T r +∇×∇× Pr. (5.2.1)

This guarantees that ∇ · u = 0.

We use (5.1.11) fror the temperature equation, and expand the
magnetic field as

B = ∇× T r +∇×∇×Pr. (5.2.2)

so ∇ · B = 0 exactly.

So we now have 5 scalar functions, P, T , P, T and θ to integrate
forward in time.

The three components of u and B have been reduced to two by
this expansion.
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Expansion in spherical harmonics

Each of these 5 scalars is expanded in spherical harmonics, e.g.

P =
`=L∑
`=0

∑
|m|≤`

P`m(r , t)Y m
` (θ, φ) (5.2.3)

where Y m
` are the Schmidt normalised spherical harmonics. L is

the truncation parameter, typically L = 128 or L = 256.

Now

r̂ · ∇ ×∇× rP = −r∇2
HP =

`=L∑
`=0

∑
|m|≤`

`(`+ 1)

r
P`m(r , t)Y m

` (θ, φ)

(5.2.4)
so each individual component is just multiplied by `(`+ 1)/r , and
the components are not coupled.
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Deriving the scalar equations 1.

The radial component of the induction equation (5.1.10) and its
curl give two equations for P and T .

The induction equation is written as

(∂t −∇2)B = NB = ∇× (u× B). (5.2.5)

NB is the nonlinear term, the other terms are linear. When we
insert the expansion (5.2.3) into this and take the radial
component, the toroidal term gives nothing, so for each `, m
component we can write

(∂t −∇2)P =
r

`(`+ 1)
r̂ ·NB. (5.2.6)

So if we can evaluate the ` and m components of the nonlinear
term, we can use (5.2.6) to timestep P in a simple way.
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Deriving the scalar equations 2.

The radial component of the curl of the induction just gives a very
similar equation for T , only the nonlinear term is more
complicated.

The same method works for the toroidal components and poloidal
components of the velocity.

We write (5.1.9) in the form

(∂t − Pm∇2)u = Nu, (5.2.7)

where the Coriolis and buoyancy terms are included in the Nu term.

We then insert the expansion (5.2.1), and take the radial
component of the curl and double curl of this equation.

As with induction equation, the P and T equations separate out,
making it convenient to time-step them forward.
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Influence matrix method 1.

There is a slight difficulty with the P equation, as this is fourth
order in r , so we get two equations

(∂t − Pm∇2)P = g , −∇2g =
r

`(`+ 1)
r̂ · ∇ ×∇×Nu. (5.2.8)

However these can be solved simply by using the influence matrix
method described in Peyret’s book.

Each equation is second order in r . There are two boundary
conditions on T , four on P and none on g .

The coupled system for P and g is solved by means of Greens
functions with the no-slip condition on P{

X P̄ = ḡ , (ri < r < ro) ∂r P̄ = 0, (r = ri , r0)
Q ḡ = f , ḡ = 0.

(5.2.9)

We solve (5.2.9) for P̄ and ḡ at each time-step.
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Influence matrix method 2.

We then solve the time independent equations{
X PG = gG ∂rPG = 0
Q gG = 0 gG = 1, 0.

(5.2.10)

{
X P ′G = g ′G ∂rP ′G = 0
Q g ′G = 0 g ′G = 0, 1.

(5.2.11)

which can be pre-computed. We then add on the linear
combination of PG and P ′G , P = P̄ + aPG + bP ′G , which satisfies
the boundary conditions P = 0 at r = ri , ro ,[

PG (ri ) P ′G (ri )
PG (ro) P ′G (ro)

] [
a
b

]
= −

[
P̄(ri )
P̄(ro)

]
(5.2.12)

P now satisfies the desired boundary conditions P = ∂rP = 0 at
both boundaries.
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Radial dependence

We need to represent the radial dependence numerically. Some
codes use a high order finite difference non-uniform mesh over r
typically up to 160 points. Other codes expand Pm

` in Chebyshev
polynomials.

All differentiation done in spectral space, all nonlinear
multiplications in physical space.

At each time-step, the quantities needed to evaluate the nonlinear
terms are evaluated on a grid in r , θ and φ space. The mesh is
used is bigger than the number of spectral coefficients used. If
0 ≤ ` ≤ L, the number of θ points is 3L/2, a choice known as the
de-aliasing rule.

Once the nonlinear terms are evaluated in physical space they can
be converted back to spectral space, i.e. expansions in spherical
harmonics.
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Time-step methods

We can now advance the integration one time-step. The linear
terms are advanced implicitly using the Crank-Nicolson scheme,
the nonlinear terms explicitly using Adams-Bashforth. A
predictor-corrector method is used to choose the time-step.

In practice, it is more convenient to treat some of the linear terms
explicitly, i.e. treat them the same way as the nonlinear terms. In
particular, the Coriolis terms are usually treated explicitly.

Slowest part of the code is evaluating the Legendre transform to
go from the spectral representation to the grid and back. Modern
codes have optimised this and so are faster.

A fast Fourier transform can be used in φ.
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Implementing the magnetic boundary conditions

No-slip boundaries imply T = 0, P = 0 and dP/dr = 0 at the
boundaries. Stress-free conditions are also possible.

Insulating magnetic boundary conditions are the most common,

T`m = 0 on r = ri , ro , (5.2.13)

∂P`m
∂r
− `P`m

r
= 0 on r = ri (5.2.14)

∂P`m
∂r

+ (`+ 1)
P`m
r

= 0 on r = ro . (5.2.15)

these are derived by matching the field to a potential field inside
the inner core and outside the CMB. More complicated options are
possible.
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5.3 Results from Boussinesq dynamo codes
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Results from dynamo codes

Pr = Pm = 1,Ra = 750,E = 10−4.
Radial magnetic field snapshot at the CMB
No internal heating. No-slip, fixed temperature, insulating
boundaries.
Very dipolar, doesn’t reverse. Field slightly weaker at the poles.
Intense flux patches at high latitudes.
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Velocity field

Pr = Pm = 1,Ra = 750,E = 10−4.
Radial velocity snapshot at
r = 0.8rCMB .
Note the columnar nature of the convection rolls, local Rossby
number small.
Intense flux patches at the top of these columnar rolls.
Pattern propagates westward.
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Higher local Rossby number

Pr = Pm = 0.2,Ra = 750,E = 10−4.
Radial magnetic field snapshot at the CMB
Much less dipolar. Field strength is weaker.
This type of dynamo can reverse.
Rossby number is larger, and inertia is playing a significant role.
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Flow at higher local Rossby number

Pr = Pm = 0.2,Ra = 750,E = 10−4.
Radial velocity snapshot at
r = 0.8rCMB .
More activity near the poles,
less columnar convection rolls.
Between these patterns lies an Earth-like regime.
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Variation with Ekman number
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Christensen and Aubert 2006 summarise the dependence on
Ekman number E and Pm.
At low E , low Pm dynamos are possible, provided Ra is large
enough. Important, as liquid metals have low Pm.
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Small E , low Pm dynamo, Flow pattern

Pr = 1,Pm = 0.1,Ra = 50Racrit ,E = 3× 10−6.
Left: radial velocity at r = 0.5r0. Right: radial velocity at
r = 0.8r0.
At lower E the convective columns are much thinner, particularly
further out from the ICB.
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Small E , low Pm dynamo, Scale separation

Left: radial magnetic field at z = 0.2. Right: vorticity at z = 0.2.
Notice that the magnetic field is on a much larger scale in these
low Pm calculations. Temperature fluctuations on same scale as
magnetic field.
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Earth-like geodynamo models

Christensen et al. 2010.

(a) Geomagnetic field. (b) Earth-like geodynamo model with
E = 3× 10−5, Ra = 3× 108, Pm = 2.5, Pr = 1. Zero flux on the
outer boundary, compositional driving.
Case (c) is not sufficiently dipolar, (d) is too dipolar, (e) is too
strong near the poles.
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Wedge for Earth-like geodynamo models

Earth-like geodynamo models have Rm and Eη = E/Pm that lie in
a particular wedge in the Rm − Eη plane. Earth may lie in this
wedge too.
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Evolution of magnetic energy with time

Sreenivasan and Jones 2011.
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E = 10−4, Pr = Pm = 1 and stress-free boundary conditions. (i)
Ra = 400, dipole dominated solution. (ii) Ra = 600 strong field
dipole dominated solution. (iii) Ra = 600, initial small field
solution grows into a relatively weak quadrupolar solution. (iv) as
case (iii) but with a different small initial field. (v) Ra = 500, an
initial small field decays away. (vi) Ra = 550, an small initial field
grows, eventually resulting in a quadrupolar field
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Helicity of the strong and weak field solutions
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E = 5× 10−5, Pr = Pm = 1, with stress-free boundaries. Helicity
is antisymmetric about equator.
Left: is the helicity u · ζ for the strong field solution on the plane
z = 0.5, Ra = 400. Right: is the helicity without magnetic field at
Ra = 500. At Ra = 500 an initial seed field decays.
Note that in the pure convection case, there is helicity, but little
net helicity. With magnetic field, there is far more net helicity, as
predicted by linear theory.
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Scaling laws: magnetic field strength

In the Earth’s core, magnetic energy is much greater than kinetic
energy, so a simple balance as used in astrophysics won’t work here.

We start with

Ohmic dissipation + Viscous dissipation = rate of working of
buoyancy forces,

The rate of working work done by the buoyancy forces is∫
ρgαT ′ur dv

which can be written in terms of the heat flux.

Ignore the viscous dissipation and we obtain∫
gαFconv

cp
dv ∼

∫
ηµj2 dv

Now need to relate magnetic energy to magnetic dissipation.
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Christensen-Tilgner law

The dissipation time is the time taken for the magnetic energy to
be dissipated through ohmic loss,

τdiss

∫
ηµj2 dv =

∫
B2/2µ dv

Equivalently, the magnetic dissipation length

δB =

(
τdiss

η

)1/2

.

Christensen and Tilgner (Nature, 2004) proposed that

δB ∼ dRm−1/2

mainly on the basis of simulations and laboratory experiments. It
also has some theoretical support, because at high Rm flux ropes
of this thickness are formed.
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Predicted field strength

We now have

ηµj2 ∼ η (∇× B)2

µ
∼ ηB2

µδ2B
∼ gαF

cp
,

giving

B∗ ∼
(

gαFconvµd

U∗cp

)1/2

.

With the inertial theory scaling for U∗ this gives

B∗ ∼ µ1/2d2/5ρ1/5Ω1/10

(
gαF

cp

)3/10

.

Remarkable feature is weak dependence of B on Ω. We are
assuming though that the planet is in the rapidly rotating low Ro
regime.
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5.4 Compressible convection equations
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Compressible convection equations 1.

In compressible flow, mass conservation

∂ρ

∂t
+∇ · (ρu) = 0 (5.4.1)

and this replaces ∇ · u = 0, the incompressible flow equation.
The momentum equation is unchanged,

ρ
Du

Dt
+ 2ρΩ× u = −∇p + gρ+ j× B + Fν (5.4.2)

except that now the density is no longer constant, but a variable to
be determined. Fν is the viscous force. B is given by (5.1.2), the
usual induction equation.
We also need an equation of state giving the pressure in terms of
the temperature and density p = p(ρ,T ) and an equation for the
entropy, S = S(p, ρ,T ). We need to use entropy as it appears in
the compressible heat transfer.
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Compressible convection equations 2.

For a perfect gas,

p = RρT , S = cv ln
p

ργ
= cv ln

T

ρ(γ−1)
+ const, (5.4.3, 4)

where R is the gas constant, S is the entropy and cv and cp are
the specific heats at constant volume and constant pressure,
respectively. γ = cp/cv .
Giant planets are not perfect gas, because the hydrogen can be
metallic. But the perfect gas case helps for understanding tbe
effects of compressibility.
The entropy equation is

ρT

(
∂S

∂t
+ (u · ∇)S

)
= ∇ · ρcpκm∇T + Qj + Qν . (5.4.5)

To get to the Boussinesq equation, entropy S is replaced by
temperature, ρ and T take their constant reference values and the
rate of heating by viscous dissipation Qν and ohmic dissipation Qj

are neglected.
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Compressible convection equations 3.

This is now a complete set of equations. If we start with an initial
condition for all the variables, we use (5.4.1), (5.4.2) and (5.4.5)
to evolve ρ, u and S . Then (5.4.4) determines the temperature T ,
and (5.4.3) determines the pressure p.

Some numerical simulations of the dynamo equations do work like
this, but there are difficulties.

The term ∂ρ/∂t in (5.4.1) means that sound waves are present in
the system. To see this look at small perturbations about the
constant entropy, uniform state case.

Sound waves are typically very fast, so we need a very small
timestep to integrate the equations, which is not efficient. We use
the anelastic equations to avoid this problem.
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5.5 Anelastic convection equations
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Anelastic models

Compressible systems that are convecting are often close to an
adiabatic state.
The anelastic approximation is based on assuming thermodynamic
quantities are close to their adiabatic values. Sometimes called
thermodynamic linearisation.

p = p̄(r) + p′, ρ = ρ̄(r) + ρ′, T = T̄ (r) + T ′, (5.5.1)

where p̄, ρ̄ and T̄ are (in spherical geometry) functions of radius
only, and the primed quantities are small compared to the
reference state values.
The reference state is chosen to satisfy the hydrostatic equation
dp̄/dr = −g ρ̄. For a centrally condensed object where
g = GM0/r

2, a polytropic reference state is a popular choice.
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Polytropic Reference State

The reference state is then

p̄ = p0ζ
n+1, ρ̄ = ρ0ζ

n, T̄ = T0ζ, ζ =
c1

r
+ c0 (5.5.2)

where c1 and c0 are constants, which satisfies the hydrostatic
balance equation.
A polytropic index n ≈ 1/(γ − 1) ensures that the reference state
is close to adiabatic.
Other more complicated, but more realistic models are possible.
If ri and ro are the radius of the inner boundary (ICB) and outer
boundary (CMB) the ri/ro is the radius ratio.

Nρ = ln

(
ρi

ρo

)
(5.5.3)

measures the density ratio across the spherical shell.
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Anelastic approximation 1.

The basic assumption is that the entropy difference across the layer
is small, i.e.

S

cp
= ε << 1. (5.5.4)

Since for perfect gas

p′

p̄
=
ρ′

ρ̄
+

T ′

T̄
,

S

cp
=

p′

γp̄
− ρ′

ρ̄
,

p′

p̄
∼ ρ′

ρ̄
∼ T ′

T̄
∼ O(ε).

(5.5.5)
Equation of motion contains terms of O(ε),

ρ̄
Du

Dt
+ 2ρ̄Ω× u = −∇p′ + gρ′ + j× B + Fν , (5.5.6)

so for consistency, |u| ∼ O(ε1/2)
√

gd , where
√

gd is the free fall
velocity across the shell. The Alfvén speed must also be small
compared to the free fall velocity.
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Anelastic approximation 2.

Now consider mass conservation (5.1.1),

∂ρ′

∂t
+∇ · (ρ̄u) = 0, (5.5.7)

since ρ̄ is independent of time.
Since |u| ∼ O(ε1/2)

√
gd , and ∂/∂t ∼ O(ε1/2)

√
g/d

and ρ′/ρ̄ ∼ O(ε), ∂ρ′/∂t is very small compared to ∇ · (ρ̄u) = 0.

So mass conservation equation is simply

∇ · (ρ̄u) = 0, (5.5.8)

in the anelastic approximation. The sound wave term is removed.
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Anelastic approximation 3.

The anelastic equations are now

∇ · (ρ̄u) = 0, (5.5.9)

ρ̄
Du

Dt
+ 2ρ̄Ω× u = −∇p′ + gρ′ + j× B + Fν , (5.5.10)

ρ̄T̄

(
∂S

∂t
+ (u · ∇)S

)
= ∇ · ρ̄cpκm∇T ′ + Qj + Qν , (5.5.11)

and these, together with the induction equation (5.1.2), can be
solved more easily than the full compressible equations.
There are two further modifications to get the system into its most
frequently used form.
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Entropy diffusion

What is the effect of small scale turbulence on the entropy
equation?

In Boussinesq convection, turbulence enhances the molecular
diffusion. The form of the equation remains the same though. We
just have κT∇2T , with a turbulent value of κ, instead of κ∇2T
with a laminar value of κ.

In anelastic convection, it is different. We use the gradient
diffusion model, where a small scale ut induces a small-scale S ′.
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Gradient diffusion model

We assume a small-scale turbulence, ut which gives rise to a
turbulent entropy fluctuation S t . S t is forced by the term
ρ(ut · ∇)S so its proportional to ∇S . The turbulent entropy flux is
then

ρutS t = It = −ρκij
∂S

∂xj
. (5.5.12)

We now make the usual assumption that κij is an isotropic tensor,
κtδij . So

It = −ρκt∇S . (5.5.13)
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Heat transport with turbulent diffusionl

Enhanced diffusion of entropy also gives a source term of entropy,
which turns out to be

σt = − 1

T
(It · ∇)T (5.5.14)

the only form consistent with energy conservation. So, we get

ρ̄T̄

(
∂S

∂t
+ (u · ∇)S

)
= ∇ · ρ̄T̄κt∇S +∇ · ρ̄cpκm∇T ′ + Qj + Qν ,

(5.5.15)
that is turbulent diffusion of entropy and molecular diffusion of
temperature.
In compressible convection, the turbulence does not just enhance
the molecular diffusion of temperature, it diffuses entropy instead.
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Second law of thermodynamics?

Landau and Lifshitz’s equation is compatible with the second law
of thermodynamics, entropy always increases. Is this true of the
turbulence model?
Source is

σt = − 1

T
(It · ∇T )

so

σt =
1

T
κt(∇S · ∇T ) (5.5.16)

Entropy gradient and temperature gradient both point outward, so
generally OK.

For a stably stratified layer, the entropy gradient and temperature
gradient can be opposite, and then entropy diffusion becomes
invalid.
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Lantz-Braginsky-Roberts approximation

The terms

−1

ρ̄
∇p′ + g

ρ′

ρ̄

can be rewritten as

−1

ρ̄
∇p′+g

ρ′

ρ̄
= ∇

(
p′

ρ̄

)
−g

S

cp
+

p′

p̄

(
1

γp̄

dp̄

dr
− 1

ρ̄

d ρ̄

dr

)
≈ ∇

(
p′

ρ̄

)
−g

S

cp

(5.5.17)
the last term vanishing because the reference state is close to
adiabatic. The momentum equation can now be written

Du

Dt
+ 2Ω× u = −∇

(
p′

ρ̄

)
− g

S

cp
+

j× B

ρ̄
+

Fν
ρ̄
. (5.5.18)
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Viscous and magnetic terms

The magnetic field B and the current j are governed by the
standard induction equation: compressibility makes no difference.
The viscous terms do change,

Fν,i =
∂

∂xj
µ

(
∂ui

∂xj
+
∂uj

∂xi

)
− 2

3

∂

∂xi
µ
∂uj

∂xj
, (5.5.19)

where µ = ρ̄ν is the dynamic viscosity and ν is the kinematic
viscosity. The models below are constant kinematic viscosity, but
sometime constant dynamic viscosity is used. The viscous
dissipation rate is

Qν = µ
∂ui

∂xj

(
∂ui

∂xj
+
∂uj

∂xi
− 2

3
δij∇ · u

)
. (5.5.20)

and the ohmic dissipation rate is

QJ = µηj2. (5.5.21)

The anelastic equations are non-dimensionalised in the same way
as the Boussinesq equations.
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5.6 Pseudospectral method for anelastic convection
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Pseudospectral method for solving the anelastic equations 1.

Poloidal-Toroidal decomposition

ρ̄u = ∇× (ρ̄T )r +∇×∇× (ρ̄P)r.

This guarantees that ∇ · ρ̄u = 0.
Equations for T and P given by r̂ · ∇× momentum equation and
r̂ · ∇ ×∇× momentum equation, giving two equations for the two
unknowns T and P.
We use (5.5.15) with no temperature diffusion for the entropy
equation, and expand the magnetic field as

B = ∇× T r +∇×∇×Pr.

so ∇ · B = 0 exactly. The radial component of the induction
equation and its curl give two equations for T and P.
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Pseudospectral method for solving the equations 2.

We now have 5 equations for the 5 unknowns T , P, S , T and P,
which are closed because of the entropy diffusion ansatz.

Expand all variables as S =
∑

S`m(r , t)Pm
` (cos θ)e imφ and

substitute these expansions into the equations. Typically need `
from 0-192.

Finite difference non-uniform mesh over r typically up to 160
points. All differentiation done in spectral space, all nonlinear
multiplications in physical space.

At each time-step, the quantities needed to evaluate the nonlinear
terms are evaluated on a a grid in r , θ and φ space. The mesh is
used is bigger than the number of spectral coefficients used. If
0 ≤ ` ≤ L, the number of theta points is 3L/2, a choice known as
the de-aliasing rule.

Once the nonlinear terms are evaluated in physical spce they can
be converted back to spectral space, i.e. expansions in spherical
harmonics.
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5.7 Anelastic dynamo benchmark
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Anelastic Dynamo Benchmark

To test the various codes, the dynamo community ran an anelastic
benchmark case to see if they gave the same results.

The case E = 10−3, Ra = 351, 806, Pr = 1, Nρ = 5, ri/ro = 0.35,
polytropic index n = 2 was selected, as this gives simple solutions
and is not very demanding computationally.

The hydrodynamic case with the field switched off was tested, and
then magnetic field put back in.
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Hydrodynamic benchmark (no magnetic field)

equatorial meridional
plane slice

ur ur

spherical meridional
surface slice
entropy zonal uφ

0.93r0

E = 10−3, Ra = 351, 806, Pr = 1, Nρ = 5, β = 0.35, n = 2
Solution steady in a drifting frame, has m = 19 symmetry. Critical
Ra for onset of convection Ra = 283, 175, with m = 20.
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Results of the hydrodynamic benchmark

E = 10−3, Ra = 351, 806, Pr = 1, Nρ = 5, β = 0.35, n = 2
Code: Leeds Glatzmaier MAGIC
KE 81.8581 81.8335 81.8385
Luminosity 4.19886 4.19886 4.19876
Zonal KE 9.37724 9.37437 9.37514
Meridional KE 0.0220183 0.0220109 0.0220136
Resolution 128× 192× 384: 121× 512× 1024: 121× 192× 384
Timestep 2.5× 10−6 5.8× 10−6 5× 10−6

Agreement to within 0.05%, very satisfactory. Solutions drift
eastwards, period 0.0187. Need small timestep.
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Steady dynamo benchmark

Steady means steady in a drifting frame. These solutions are very
difficult to find. Flow has to have large Rm for a dynamo, but
lowish Re to be hydrodynamically stable. Large Pm only
possibility, but this is numerically difficult. Needed to compromise
on Nρ and E .
E = 2× 10−3, Ra = 80, 000, Pr = 1, Pm = 50, Nρ = 3, β = 0.35,
n = 2
The dynamo is supercritical, Racrit = 61, 621.682, with azimuthal
wavenumber m = 10.
However, the benchmark dynamo has exact m = 7 symmetry.
Runs did not assume this, but used all wavenumbers, to ensure
stability against perturbations of any m.
This compressible dynamo drifts eastwards. The Boussinesq
Christensen benchmark drifts westward, and much slower.
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Dynamo Benchmark energy

0.0 0.5 1.0 1.5 2.0 2.5
t

105

106

E

Kinetic energy

Magnetic energy

E = 2× 10−3, Ra = 80, 000, Pr = 1, Pm = 50, Nρ = 3, β = 0.35,
n = 2
Time here is measured in magnetic diffusion times, so t=2
corresponds to 100 viscous diffusion times. Timestep is 3e-06 (or
less) on magnetic diffusion timescale. Fortunately, the solution
does not require very high resolution: 64 radial points and 48 X 48
spherical harmonics gives well-resolved solutions.
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Steady Dynamo Benchmark Flow

equatorial meridional
plane slice

ur ur

spherical meridional
surface slice
entropy zonal uφ
r = 0.86ro

E = 2× 10−3, Ra = 80, 000, Pr = 1, Pm = 50, Nρ = 3, β = 0.35,
n = 2
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Steady Dynamo Benchmark Field

br viewed equatorial
from slice

N. Pole bθ

spherical meridional
surface slice
br zonal bφ

r = 0.86ro

E = 2× 10−3, Ra = 80, 000, Pr = 1, Pm = 50, Nρ = 3, η = 0.35,
n = 2
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Steady Benchmark Comparisons

Code: Leeds Glatzmaier MAGIC
ASH
KE 4.19407× 105 4.19390× 105 4.19438× 105

4.19106× 105

ME 3.20185× 105 3.20083× 105 3.19749× 105

3.17330× 105

Luminosity 11.5030 11.5030 11.5030
11.5033
Resolution 128X144X252: 65X128X256: 65X128X256:
97X256X512
Timestep 10−6 2.1× 10−6 10−6

1.4× 10−6

Generally OK, though ASH is a bit of an outlier.

(5.7) Anelastic dynamo benchmark 60/60


