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• The Brewer-Dobson circulation (BDC) controls the 
distribution of chemical species within the stratosphere
– The circulation is mechanically driven (a refrigerator) 

by torques exerted by waves propagating up from the 
troposphere (so-called “wave drag”)

Shaw & Shepherd (2008 Nature Geosci.)
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• The Rossby wave drag 
comes from breaking of 
upward propagating 
waves, seen dramatically 
in the stratospheric “surf 
zone” (top panel, PV on 
850 K isentropic surface, 
approx. 30 km altitude)

• This behaviour was argued 
to be that of a nonlinear 
critical layer (bottom panel)

McIntyre & Palmer 
(1983 Nature)

Critical layers occur where 
the wave phase speed 
equals the flow speed



• The BDC raises and cools the tropical tropopause,
   and lowers and warms the extratropical tropopause 

GCM calculations by Thuburn & Craig (2000 JAS)
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• The seasonal variation in the BDC leads to a 
seasonal variation in lower stratospheric temperature
• Tropical temperatures are lowest in boreal winter, 

when the tropical upwelling is the strongest

Yulaeva, Holton & Wallace (1994 JAS)
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influence of the 
BDC



Updated from 
Randel et al. (2004 
JAS)

Interannual 
anomalies in the 
“tropical tape 
recorder” as seen 
in HALOE 
measurements 
from the UARS 
satellite

• This causes a seasonal cycle in dehydration which is 
imprinted on the water vapour entering the stratosphere: 
the “tropical tape recorder” (Mote et al. 1996 JGR)

• Tropical tropopause temperature also controls 
stratospheric water vapour on interannual timescales



• Climate models consistently predict a strengthened 
Brewer-Dobson circulation in response to climate change

There is a 
compen-
sating 
decrease 
in the 
tropics

CMAM simulations from Shepherd (2008 Atmos-Ocean)
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• The extent to 
which the future 
evolution of 
ozone will follow 
the decline in 
ESC varies 
considerably 
between regions

• Shaded areas 
show multi-model 
ensemble, 
including natural 
variability, based 
on SPARC 
CCMVal-2 
simulations

WMO 20 Q&A 
(2011)

Fahey and Hegglin (2011)



• This has implications for the flux of stratospheric ozone 
into the troposphere, and clear-sky UV radiation
– Over the extratropical NH the decrease in clear-sky 

UV radiation would have adverse health implications

CMAM results from Hegglin & Shepherd (2009 Nature Geosci.)

STE ozone flux Change in clear-sky UV index 
between 1960s and 2090s



• The strengthened tropical upwelling does not necessarily 
imply strengthened polar downwelling
– Here the focus is on the net mass overturning at 70 

hPa, which is dominated by the extrapolar circulation

McLandress & Shepherd (2009 J. Clim.)



• In principle, there are three ways to change the BDC:
– Change the amount of wave forcing generated 

within the troposphere
• No GCM study has identified such an effect, 

and several have explicitly found no detectable 
change

– Change the penetration of wave propagation into 
the stratosphere

• First suggested by Rind et al. (1990 JAS), and 
confirmed by many subsequent GCM studies

– Change the latitudinal distribution of wave drag 
within the stratosphere (Shepherd & Shaw 2004 
JAS)

• Not really investigated



• Several modelling studies have proposed increased 
upwelling driven by drag from convectively forced quasi-
stationary equatorial waves (in a warming climate) as the 
origin of the strengthened BDC, but this upwelling is 
necessarily confined within the tropics
– Also it peaks in northern summer, not winter

Modelled change in 
TEM 
streamfunction for 
July-August

Deckert & Dameris 
(2008 GRL)



• Using a highly idealized model, Eichelberger & Hartmann 
(2005) had found strengthened synoptic-scale wave 
forcing from climate change due to increased baroclinicity
– There is no evidence for this in CMAM

Shepherd & 
McLandress 
(2011 JAS)



• Since the first BDC study (Rind et al. 1990 JAS), 
attention has focused on the strengthened subtropical 
jets that are a robust outcome of tropospheric warming
– Several studies have shown that BDC changes result 

from tropospheric warming, not stratospheric cooling
• Some authors argue for effect of SST changes, but 

this is the same as tropospheric warming!

Shepherd & 
McLandress 
(2011 JAS)



• The strengthened resolved wave drag results from 
increased penetration of Rossby waves into the 
subtropical lower stratosphere (the critical region for 
driving of the BDC) — as pointed out by many authors
– But what is the mechanism? 
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Shepherd & McLandress (2011 JAS)



• The key region for driving of the BDC is the subtropics
• In CMAM the strengthened BDC results from a roughly 

equal combination of transient planetary, transient 
synoptic, and parameterized orographic gravity waves

– The key region for driving of the BDC is the subtropics

Shepherd & McLandress (2011 JAS)



• Transient waves are not often discussed in the context of 
the BDC, but their drag is strategically located close to 
the turnaround latitudes

• In CMAM, the stationary wave changes are largely 
confined to the tropics and higher latitudes

McLandress & Shepherd (2009 J. Clim.)

Changes in vertical EP flux at 100 hPa



• The importance of synoptic-scale Rossby waves to the 
BDC may seem surprising, but the drag from synoptic-
scale waves extends continuously into the subtropical 
lower stratosphere

Annual mean 
observed EP 
flux and flux 
divergence 
from ERA-40

Tropopause 
shown with 
thick line

Randel, Garcia & Wu 
(2008 JAS)
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The subtropical 
synoptic-scale wave 
drag is understood 
to arise from the 
nonlinear breaking 
of baroclinic waves

Simmons & Hoskins 
(1978 JAS)

Edmon, Hoskins & 
McIntyre (1980 JAS)

Thorncroft, Hoskins 
& McIntyre (1993 
QJRMS)



• The breaking of synoptic-scale Rossby waves occurs in 
nonlinear critical layers
– The subtropical critical layer in the upper troposphere, 

and the midlatitude critical layer in the middle 
troposphere

– Here for northern winter; northern summer is similar

Randel & Held (1991 JAS)



• Rossby-wave drag responds to the strengthened 
subtropical jet from climate change via the mechanism 
of critical-layer control
– Plots show EP flux divergence and zonal wind

Shepherd & McLandress (2011 JAS)



• The synoptic-scale wave drag shifts upward into the 
lower stratosphere, following the upward shift in the 
critical layers
– No apparent change in the amount of wave drag

Shepherd & McLandress (2011 JAS)



• Critical-layer control is similarly seen to explain the 
changes in planetary-scale wave drag in the NH 
subtropical lower stratosphere
– Critical layer control holds in the SH in DJF, and in 

the NH in JJA for synoptic and planetary waves, but 
the wave drag changes occur at higher latitudes

Shepherd & McLandress (2011 JAS)



• For planetary-scale wave drag, the changes are not 
just an upward shift, suggesting either meridional 
redistribution or an increased forcing of planetary 
waves from the troposphere (but still with critical-
layer control) — needs further investigation

Shepherd & McLandress (2011 JAS)



• The contribution of parameterized (mainly orographic) 
gravity-wave drag (GWD) to the strengthened tropical 
upwelling can be substantial, albeit with large 
differences between models
– These CCMVal-1 results are corroborated by the 

more recent CCMVal-2 comparison (Chapter 4 of 
SPARC CCMVal Report, 2010)

Butchart et al. (2010 J. Clim.)

Black – total
Dark gray – resolved
Light gray – GWD



• Reanalyses corroborate the notion that something like 
one-third of the climatological BDC upwelling may 
come from unresolved (presumably gravity wave) drag

Randel, Garcia & 
Wu (2008 JAS)

Estimates of 
total upwelling

Estimates of 
upwelling induced 
by resolved wave 

drag



• The orographic GWD contribution to the strengthened 
BDC arises from an upward shift in gravity-wave 
breaking levels induced by the strengthened lower 
stratospheric westerlies (Li et al. 2008 J. Clim.)

McLandress & Shepherd (2009 J. Clim.)



• Radiosonde observations show a lower stratospheric 
cooling above the tropical warming from El Niño, along 
with midlatitude lower stratospheric warming — the latter 
mainly in the SH

Regression of DJF 
temperature onto 
Nino 3.4 index

These stratospheric 
features must be 
dynamically driven

Free & Seidel (2009 
JGR)



• The CMAM shows a 
temperature 
response (top) 
consistent with 
observations
– DJF is shown

• Symmetric between 
El Niño and La Niña

• The stratospheric 
anomalies are 
associated with 
changes in 
upwelling/downwellin
g (bottom)
– Largest response 

is in the SH
Simpson, Shepherd & 
Sigmond (JAS 2011)



• The SH response is 
driven mainly by 
anomalous drag from 
resolved transient (i.e. 
Rossby) waves, 
mainly of synoptic 
scale (top)

• The NH response is 
driven mainly by 
anomalous 
parameterized 
orographic gravity 
wave drag (bottom)

Simpson, Shepherd & 
Sigmond (JAS 2011)



Summary
• The strengthened BDC from climate change consistently 

predicted by models must be a result of increased wave 
drag in the subtropical lower stratosphere
– Increased wave drag within the tropics cannot increase 

the mass flux out of the tropics
• Many studies have appealed to “improved propagation 

conditions” from strengthened subtropical winds, but no 
clear mechanism has been previously identified
– Role of stationary waves appears to be small

• Critical-layer control of Rossby-wave breaking provides a 
robust mechanism for a strengthened BDC in CMAM
– Planetary and synoptic-scale waves both contribute
– Same mechanism applies to orographic GWD
– Explains why the effect is so robust among models



• The high-latitude stratospheric circulation response to 
climate change is a completely separate issue
– Driven by stationary planetary waves; not understood

• Stratospheric response to ENSO may differ in significant 
ways from response to GHG-induced tropospheric 
warming
– While response also maximizes in DJF, the low-latitude 

response is strongest in the SH rather than in the NH
– OGWD response in NH subtropics appears to be driven 

by the same dynamics as the OGWD response to 
climate change (cf. Calvo et al. 2010 JAS)

– Synoptic Rossby-wave response in SH subtropics does 
not seem explainable from critical-layer control

• Rather it appears (in CMAM) to result from increased 
wave forcing from the troposphere, with distinct 
responses in the Pacific and elsewhere 
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