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4.14. TURBULENT  PLUMES
1. Preliminaries

Examples of cigarettes, smoke stacks, volcanic vents.

Convection in the form of:

       (1) buoyant plumes

       (2) momentum jets

       (3) finite volume thermals

A rising light fluid is dynamically equivalent to a falling heavy fluid in B.a.

Unsteady at Re = O(10), fully turbulent at Re ~O(103).

High Re motions are independent of   (and of ) and hence of Re. 

Assume for simplicity, a calm ambient (background).

There is a sharp boundary (between plume and ambient) at any point in time, with 

strong temporal variation.

Entrainment of ambient by eddies leads to increasing width of the plume. Mixing 

takes place within plume in a manner independent of  etc.

U, o' are intermittent, but consider temporal averages over a short time to lead to 

averages independent of short time, though there may still be long-time variations.

4.2All quantities vary as a gaussian in the horizontal, but often a uniform 

approximation is made resulting in a top-hat profile.
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U = M Q,     A = Q2 M,     ′ g = F Q

per unit mass

Q = wdA∫ ~ a2U ≡ L3T−1

vertical velocity

(i) Specific mass flux

reduced gravity

U,    A,    ′ g = g a −( )at source:

    
M = w2∫ dA ~ a2U2 ≡ L4T−2

(ii) Specific momentum flux

F = w ′ g dA∫ = 2 w ′ g rdr ~ ′ g a2∫ U ≡ L4T−3
 (iii) Specific buoyancy flux

2. Quantification of a plume

b
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F, Q, M are functions of  z with initial values (at source) of                and

Consider a pure buoyancy source:    (eg. a cigarette)

Assume it is discharging into a uniform ambient. Then F remains constant.

Far from the (small) source there is no input lengthscale and so

    Fo ≠ 0,    Mo = Qo = 0

    Fo MoQo

Dimensional analysis and experiments yield,

w = 4.7Fo
1 3 z −1 3 exp −96 r2 z2( )

≡′ g 
g a −( )

a

= 11Fo
2 3 z−5 3 exp −71r2 z2( )

b = 0.17z

z

b b  radius b ∝ z

a = Ambient density

Experiment

Q ∝ wb2 ∝ Fo
1 3 z5 3

increases due to entrainment
    M ∝ w2b2 ∝ Fo

2 3 z4 3

increases due to working of buoyancy forces

4.3

With this assumption, can look in general at equations for plume motion. These can 

be obtained from first principles or by boundary-layer equations (Appendix).

1) Conservation of mass

4.4

Consider a strip of height z

b2w ( )= 2 b zu
∝ w 

= 2 bw z

    
⇒ d

dz
b2w ( )= 2 b w      ( I )

i.e.     
d

dz
b2w 2( )= b2 g

− a
 

 
 

 

 
 b2 w 2[ ]= b2 zg − a( )

d
dz

b2w 2( )= b2 ′ g 

    
w = b− w∫ rdr     = 1,2( )

     ( II )

≈ aIn the Boussinesq approximation, can say

So

z
b

z

3. Morton, Turner and Taylor (1956) plumes
entrainment constant

inflow velocity vertical velocity

  b ∝ z ⇒ u = w
Turner 1969 & 1979

Linden  2000

2) Conservation of momentum
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4.5

3) Conservation of buoyancy

(Consider      as some reference density)∗

b2
∗ −( )w [ ]= 2 b zu ∗ −( )

d

dz
b2

∗ −( )w [ ]= 2 bw ∗ − a( )

= ∗ − a( ) d

dz
b2w ( )

=
d

dz
b2w ∗ − a( )[ ]+ b2w 

d a

dz
d

dz
b2 ′ g w [ ]= b2w 

g

∗

d a

dz
= − N2 z( )b2w      

      from  (I)

(III)

Solutions exist for a variety of different cases.

4.6Alternatively, in terms of Q, M and F

dQ
dz

= 2 3 2 M1 2

dM
dz

= F Q M

dF
dz

= − N2Q

    Q = Q0 , M = M0 , F = F0 z = 0( ).
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Case (a)                               (i.e. Uniform Ambient)N2 = − g

o

d

dz
≡ 0

    

b = 5

6
z w = 5

6

9

10
F

 
  

 
  

1 3

z−1 3

′ g = 5F

6

9

10
F

 
  

 
  

−1 3

z5 3

Note:   from (I)     

from (I) and (II)   

1

Q

dQ

dz
= 2

b

db

dz
= 2 − 1

2

b ′ g 

w 2

= 2    ′ g = 0    jet

    
= 5

6
   N ≡ 0  plume

  ≈ 0.1    (0.085 better fit)

Q0 = M0 = 0

 From (III), F remains constant.

 If further

4.7

4.8Case (b)                          but

Define a lengthscale based on

Q0 = N = 0M0 , F0 ≠ 0

lMF = F0
1 2M0

3 4

Solutions in terms of                       = z lMF

lMFz → 0           represents either             with        fixed or z fixed and                                            lMF → ∞,  → 0

           represents either              for fixed        or z fixed,                 a pure 

buoyancy-driven plume.

i.e. Far from the source, the plume acts like pure buoyancy. i.e. 

lMF     M0 → 0 ,

  

  →∞ z → ∞

    l > > lMF

2

i.e. Close to the source, output acts like a momentum jet.

a momentum-driven jet.i.e.   F0 → 0,
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z ~ lMF

5
6

2 z ~ lMF

or more 

accurately

Alternatively, heavy fluid can be shot out of a source

zmax

zmax ∝ lMF zmax = 1.85 lMFIn fact

4.9

4.10

    Case (d)  2D Plumes

line sourceB = 2D Buoyancy Flux

B = w ′ g dx
0

∞

∫   ≡ L3T −3[ ]

If only  Bo  is non - zero

x

z

    w ∝ B1 3      B = B0  always

independent of z in 2D case

Case (c)  Q0 , M0 ≠ 0     F0 = 0     N = 0

lQM = Q0

M0
1 2

when  z << lQM ,   mass flux is important

when  z >> lQM ,   momentum flux is important
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4.11

lFN = F0
1 4

N
−3 4

   for   N  constant

Case (e) F0 , ≠ 0N M0      Q0 = 0=

Ambient density gradient

Ambient density gets less and less. Eventually the density of the plume 

will reach the density of the ambient.

entrainment

plume density = ambient density

a z( )

i =  input density

    i < a 0( )

Solutions show

(the plume runs out of buoyancy, 

but still has momentum)

at  z = z1 = 1.04 −1 2 lFN      ′ g = 0

at  z = z2 = 1.37 −1 2lFN      w = 0 (momentum gone)

where, in the calculation of z2 , it is assumed that 
it continues to propagate as a regular plume.
By experiment, at         the plume 
intrudes.

    z = z3 = 3.76lFN

z2

z1

F0 , NLength scale based on

4.12

Measurements of plume rise in calm stratified surroundings compared 

with the theoretical relationship (in Turner, page199).

10-1 101 103

101

103

F0
1 4N −3 4

3.76

P
lu

m
e 

ri
se

  
(f

t)

(ft)

Large oil fire

Oil fire experiments over a desert

Crawford & Leonard (ice rink)

Morton, Taylor &

Turner (laboratory)
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4.13Case (f)  Morton integrated the equations for

F0 , ≠ 0NM0      Q0 = 0, i.e. a forced plume in a stratified ambient.

Case (g)  Finite Box

Axisymmetric plume in a finite axisymmetric box.

As         ,           because near source jet entrains more fluid                                 

so, in some range of parameters, the plume does not go as high.

M0↑ zmax↓
    2 vis a vis 6

5

Filling Box - influences

the whole ambient

H

R

z = zf

front
Equations I -- III for the plume 

with             to be determined along 

with vertical velocity       behind the 

front.

N2 z( )
U

Baines & Turner 1969

4.14Continuity

Density difference at front equals density difference in plume.

Solution

Result

a

t
+ U a

z
= 0

in original plume.′ g   at  z = zF
+    equals   ′ g z = H( )

t = 5

4

 
  

 
  

10

9

 
  

 
  

1 3

R2 F0
−1 3 zF

−1 3 − H−2 3( )
zF t( )which giveszF

H

t

z
H

a

    ↓ ˙ z F

t

1

    ↓ ˙ z F

density
profile 
changes 
over 
time

Worster & H2  1983
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4.15Summary of Plume Theory

Motion predicted by three equations for    , g' and b as functions of z . 

Solutions of governing equations often obtainable by dimensional 

analysis.

Filling box effects important in confined regions such as rooms, 

buildings, craters.

•

•

•

•

w 

Turbulent plumes propagate and spread under action of 

entrainment.

Plumes described by three input parameters, Q, M, F.

Results applicable to a very wide range of sizes.

•

4.16
Lecture 4. Turbulent Plumes

Baines, W.D. and Turner, J.S., 1969  Turbulent convection from a source in a confined region, J. Fluid Mech., 

     37, 51-80.

Morton, B.R., Taylor, G.I. and Turner, J.S., 1956  Turbulent gravitational convection from maintained and   

     instantaneous sources, Proc. Roy. Soc. A 234, 1-23.

Linden, P.F., 2000  Convection in the environment. In: Perspectives in Fluid Dynamics: A Collective           

     Introduction to Current Research. G.K. Batchelor, H.K. Moffat and M.G. Worster (eds.) Cambridge    

     University Press, pp.289-345.

Turner, J.S., 1969  Buoyant Plumes and Thermals. Ann. Rev. Fluid Mech., 1, 29-44.
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4.A1

Equations of motion
Axisymmetric, steady flow with no swirl   u = (u,0,w)
Ignore viscosity and diffusion

rate of increase of volume flow in the plume is compensated by an inflow at 
infinity - entrainment.

The entrainment assumption
Integrate  (11)  across the plume

(1)

(2)

u
u

r
+ w

u

z
= − 1

0

p

r

u
w

r
+ w

w

z
= − 1

0

p

z
− g

0

(3)u
p
r

+ w
p
z

= 0 (4)    

1

r r
ru( ) + w

z
= 0

(5)
    

r
w

z
dr

0

∞

∫ = −
r

ru( ) dr
0

∞

∫

d

dz
rw dr

0

∞

∫ = − ru[ ]0

∞ = −ru ∞

z

r

Appendix

4.A2The rising plume acts like a line sink to the exterior flow. 

In unstratified fluids the entrainment assumption and similarity theory 

are equivalent.

by  (12)

    

dQ

dz
~ z2/3

~ ru ∞

~ ru  edge of plume

    Since r ~ z see  4( )( ) ⇒ u ~ z−1/3

From  (2)  note that                   and so the inflow velocity at the edge of the 

plume has the same vertical dependence as the vertical velocity in the 

plume.

Assume that inflow velocity is a constant fraction  α  of the upward velocity 

in the plume - entrainment assumption  (Morton, Tayor & Turner, 1956  

Proc. Roy Soc. A 234, 1-23)

    w~ z−1/3

⇒From  (5)  we see that similarity theory
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4.A3The buoyancy flux  B

Now
    
B = 2 rw

− e

0

dr
0

∞

∫

d
dz

rw − e( ) dr
0

∞

∫ = r − e( ) w
z

dr
0

∞

∫ + rw
z

− e( )dr
0

∞

∫

= − − e( )
r

ru( ) dr−
0

∞

∫ rw e

z
dr

0

∞

∫ from  (3),  (4)− ru
r

− e( ) dr
0

∞

∫

= −
r

ru − e( )[ ]dr
0

∞

∫ − e

z
rw dr

0

∞

∫

= ru − e( )[ ]
0

∞
− e

z
rw dr

0

∞

∫

(15)
    
= − e

z
rw dr

0

∞

∫

Hence,  B  conserved in unstratified surroundings e

z
where = 0 .( )

4.A4

vertical rate of increase in momentum flux equal to work done by 

buoyancy force.

Comparison of  (8)  and  (9)  shows that

(13)    Outside plume     = e z( ), w = 0 and 9( ) ⇒
  

p

z
= − g e

If we assume the plume is thin
    r

>>
z

 
  

 
  , 11( ) ⇒

    

u

w
~

b

z
~ << 1.

    

p

r

p

z
~

(14)
    

d

dz
rw2dr

0

∞

∫ = − rg
− e( )

0

dr
0

∞

∫

and so, to first order   p = p(z)   and  (13)  holds across the plume.

Now integrate  (9)  across the plume and use  (11)  &  (13) →
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4.A5Top-hat profiles

Since the flow in the plume is turbulent we can write all quantities as 

the sum of a mean and a fluctuating part

In classical plume theory it is assumed that the turbulent fluxes are 

negligible compared with the mean fluxes and than we have  (8) - (11)  

rewritten with mean values

Take average and use  (16)

In a steady flow it is convenient to take time averages

Consider the mass conservation equation  (10)  and substitute

(16)    eg u = u + ′ u , where ′ u = 0

    
u + ′ u ( ) + ′ ( )

r
+ w + ′ w ( ) + ′ ( )

z
= 0

    
eg     u 

r
+ w 

z
= 0

mean fluxes turbulent fluxes

  
u 

r
+ w 

z
= − ′ u 

′ 
r

− ′ w 
′ 

z

4.A6

Conservation equations are - with the entrainment assumption

The observed mean properties are Gaussian but we can define 

equivalent top-hat profiles

Define the top- hat velocity  w  and width b  w 

    

w b2 = w r( )r dr
0

∞

∫

w 2b2 = w2 r( )r dr
0

∞

∫

mass flux

momentum flux

buoyancy flux

(I)

(II)

(III)
    

d

dz
w b2( )= 2 bw 

d

dz
b2w 2( )= b2 ′ g 

d

dz
b2w ′ g ( )= −b2w N2 z( )

Outside the plume  w = 0.  w 

z


