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Abstract
The equivalent-barotropic structure of Bonin high

is examined with a simple GCM and re-analysis data.

The stationary Rossby wave induced in the desert region

is found to be responsible for the equivalent-barotropic

structure near Japan. The present talk begins with a

classical problem on the response to heating. Realistic

settings such as effects of zonal flow and orography are

gradually added.
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Plan of talk

1. Introduction

2. Response to localised heating

• Response to heating on the equator
• Response to off-equatorial heating
• Role of zonal flow
• Effect of orography

3. Response to climatological heating

• Total climatological heating of August
• Total but the Western Pacific heating
• Total but the Silk Road cooling

4. Conclusions and Discussion
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Equivalent-barotropic structure of

Bonin high

• Develops and covers Japan after the Baiu season.

• Equivalent-barotropic:

– Vertically in phase
– Maximum amplitude near the tropopause

• Quasi-stationary: ∼ 10-15 days
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Charts: 31 July 2000

Figure 1: 200, 500 hPa height and sea level pressure
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Observed diabatic heating

• Major heatings:

– Bay of Bengal – Indian monsoon, off-equatorial
– Western Pacific – Asian monsoon

• Cooling: Silk Road

Figure 2: Column integrated diabatic heating in
August (ERA15 climatology) in W/m2
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Response to heating on the equator

Matsuno (1966)’s model:

• Shallow water
• Equatorial β plane
• Linearised about the stationary atmosphere

Assuming Lx � Ly, the set equations become:

∂u

∂t
− βyv=−∂φ

∂x
(1)

βyu=−∂φ
∂y

(2)

∂φ

∂t
+ gh

(
∂u

∂x
+
∂v

∂y

)
= 0. (3)
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Kelvin wave

If v = 0, Eqs. (1)-(3) become

∂u

∂t
=−∂φ

∂x
(4)

βyu=−∂φ
∂y

(5)

∂φ

∂t
+ gh

(
∂u

∂x

)
= 0. (6)

Equations (4) and (6) give

∂2u

∂t2
− gh

(
∂2u

∂x2

)
= 0. (7)

Thus the dispersion relation for the Kelvin wave is

c2 =
ω2

k2
= gh, (8)
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if the monochromatic wave solution


uv
φ


 =


ûv̂
φ̂


 exp{i(kx− ωt)} (9)

is assumed, the solution is given by Eq. (4) and (5)

û = u0 exp

(
− y2

2L2
β

)
, (10)

where Lβ ≡
√√

gh/β is the equatorial Rossby
radius of deformation.

Figure 3: (u, v) and φ for the Kelvin wave solution
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Rossby wave

For v 	= 0, we obtain

d2v̂

dy2
+
(
−βk
ω

− β2y2

gh

)
v̂ = 0 (11)

from eq. (1)-(3), and (9). Substituting Y = y/Lβ
and v̂ = f(Y ) exp(−Y 2/2) into (11), we have

d2f

dY 2
− 2Y

df
dY

+
{
−k

√
gh

ω
− 1
}
f = 0 (12)

Equation (12) has a solution

f(Y ) = Hn(Y ) (13)

provided that

−k
√
gh

ω
= 2n+ 1, (n 	= 0). (14)
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The phase speed of the Rossby wave is

c = −
√
gh

(2n+ 1)
, (15)

which is slower than the phase speed of Kelvin wave
at least by a factor of 3 (n = 1).

Figure 4: (u, v) and φ for the Rossby wave solution
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Gill pattern

Solutions for heating on the equator:

• Decay away from the equator as exp(−y2/4).
• Eastward propagating Kelvin wave
• Westward proagating Rossby wave

Figure 5: Distribution of (a)(u, v), w, (b)(u, v), p.
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Sverdrup balance

In the heating region,

• ascent, w > 0, has the same pattern as Q.

• the flow is away from the heat source, v > 0.

The vorticity equation,

βv = −f
(
∂u

∂x
+
∂v

∂y

)
,

(the Sverdrup balance) requires the poleward flow.
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Response to antisymmetric heating

• Long mixed wave in the heating region.
• No motion to the east of heating.
• Westward propagating Rossby wave

Figure 6: Distribution of (a)(u, v), w, (b)(u, v), p.
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Response to off-equatorial heating

• Symmetric + antisymmetric (Gill, 1980)

• Dominatly Rossby wave to the west

• Warm region to the west

• Descent to the west (Rodwell and Hoskins, 1996)

Figure 7: Distribution of (a)(u, v), w, (b)(u, v), p.
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Why Sahara is dry in the summer?

• No Hadley cell in NH summer.
• But strong descent over the desert region.
• Zonal(West-East) temperature gradient due to
off-equatorial heating.

Figure 8: Observed JJA (a)ω, (b)-(d) each term of
thermodynamic equation, and (u, v), p on θ = 325K
(Rodwell and Hoskins, 1996).
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Monsoon-Desert mechanism

• Monsoon heating creates a warm anomaly to the
west.

• The isentropic surface lowers.

• The westerly descends along the isentropics
surface.

Warm

pressure

EastWest

Westerly

Isentropic surface

H

Isentropic surface

Figure 9: Schematic illustration of the
Monsoon-Desert mechanism
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Model and Data

Reading Univ. spectral model:

• Horizontal truncation wavenumber: 42

• Num of vertical layers: 15

• No physical processes

Climatology of August from the ECMWF re-
analysis (1979-93):

• Zonally-averaged winds and temperature, or

• Globally-averaged temperature in each layer

• Diabatic heating
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Experiments on response

to localised heating

• Indian heating (80E–110E, 10S–35N)

• Effect of off-equatorial heating:
Heating at the equator and at 20N

• Role of the jet

– How does off-equatorial heating interact with
the jet?

– Re-examination of the Monsoon-Desert
mechanism

• Effect of orography
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Response to the Indian heating

relocated to the equator

Figure 10: ψ and ω at Day 5 (top) and 10 (bottom)
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Response to the Indian heating

Figure 11: ψ and ω at Day 5 (top) and 10 (bottom)
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Response to the Indian heating

in the presence of the jet

• Descent and ascent along the jet

• Northeastward propagation of stationary Rossby
Wave

Figure 12: ψ at σ = 0.23 and ω at σ = 0.5
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Descent along the isentropes

∂ū

∂z
= −R

H

∂T̄

∂y

The jet is associated with the isentropes descending
toward the equator.

Figure 13: φ–p section of (v, ω), θ at λ = 81E
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Vorticity balance

ū
∂ζ ′

∂x
+ βv′ = −(f + ζ)D′

• In the upper troposphere, the zonal advection is
balanced by the planetary vorticity advection and
the stretching of vortex tube.

• In the lower troposphere, the shrinking of vortex
tube is balanced by the planetary vorticity
advection.

 L

 H

Stretching of vortex tube

Shrinking of vortex tube

Vorticity advection by zonal wind

Planetary vorticity advection

Planetary vorticity advectionH

Figure 14: Schematic illustration of vorticity balance
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Thermodynamic balance

ū
∂T ′

∂x
+
∂T̄

∂y
v′ +

(
p

p0

)κ
ω
∂θ

∂p
=
Q

cp

At 40N on the 500 hPa surface

• ū ∼ 8 m/s, v′ ∼ 4 m/s

• |T ′
x| ∼ 0.05 K/1000km < |T̄y| ∼ 0.4 K/1000km

• Thus the primary balance exists between
meridional and vertical advection at the centre
of decent.
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Role of the jet

The zonal (eastward) basic flow

• creates a meridional tilt of isentropes.

• advects negative voriticity eastward.

As a result, the meridional flow of disturbance has
a vertical component, which induces the stationary
Rossby wave.
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Response to the Indian heating

in the presence of the jet and orography

Figure 15: ψ at σ = 0.23 and ω at σ = 0.5
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Response to the Indian heating

in the presence of the jet

and orography shifted −45◦

Figure 16: ψ at σ = 0.23 and ω at σ = 0.5
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Stationary Rossby wave propagation

Figure 17: Wave activity flux on ψ′(k ≥ 3) for
without, with, and shifted orography runs
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Effect of orography

• The orography modifies distribution of vertical
motion thus Rossby wave induction.

• Cancellation of the mechanical ascent and the
thermally-induced explains why descent does not
exist near the forcing and implies involvement of
other processes.

• Weakening of vertical motion suppresses the
Rossby wave induction.

• The descent near the Aral sea has a realistic
location and distribution.
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Which diabatic heating is important?

• Indian heating, jet, and orography: no Bonin high

• Other regions of diabatic heating/cooling:

1. Western Pacific (110-180E, 5-25N)
– PJ pattern (Nitta, 1987)

2. Japan (120-150E, 30-60N)
3. Silk Road (0-120E, 30-60N)

Fig 2: Column integrated diabatic heating in August
(ERA15 climatology) in W/m2
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Comparison: Upper troposphere

Figure 18: ψ at σ = 0.23 for W Pacific, Japan, and
Silk Road runs.
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Comparison: Surface pressure

Figure 19: Sea level p for W Pacific, Japan, and
Silk Road runs.
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Stationary Rossby wave from the desert

Figure 20: λ-t section of ψ′
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Comparison: Wave activity flux and ψ′

Figure 21: Wave activity flux on ψ′(k ≥ 3) at
σ = 0.23 for W Pacific, Japan and Silk Road runs.
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Effect of other heating/cooling

• The Western Pacific heating appears to be
important in the low levels and to induce the
PJ pattern, which is not of primary importance
to the equivalent-barotropic structure near Japan.

• The local diabatic forcing appears to enhance the
upper tropospheric anticyclone over Japan. Its
effect near the surface is minor.

• The Silk Road cooling is of primary importance
in stationary Rossby wavepacket induction. The
development of decay of anticyclone has timescale
of ∼ 10 days, which is consistent with observation.
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Experiments with climatological heating

Having understood the role of various
heating/cooling heat source, the jet, and orography,
the climatological heating is used:

1. Total

2. Total but the Western Pacific heating

3. Total but the Silk Road (incl. Japan) cooling
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Comparison: Upper troposphere

Figure 22: ψ at σ = 0.23 for the climatology, control
and no W Pacific runs.
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Comparison: Upper troposphere

Figure 23: ψ at σ = 0.23 for the climatology, control
and no Silk Road runs.
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Comparison: Surface pressure

Figure 24: Sea level p for the climatology, control
and no W Pacific runs.
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Comparison: Surface pressure

Figure 25: Sea level p for the climatology, control
and no Silk Road runs.
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Time evolution of ψ′ in the Control

Figure 26: λ-t section of ψ′ at φ = 38N
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Time evolution of ψ′

in the no W Pacific run

Figure 27: λ-t section of ψ′ at φ = 38N
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Time evolution of ψ′

in the no Silk Road run

Figure 28: λ-t section of ψ′
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Comparison: Wave activity flux and ψ′

at φ = 38N

Figure 29: Wave activity flux on ψ′(k ≥ 3) at σ = 0.23

for the control, no W Pacific and no Silk Road runs

FDEPS 2000 43



Enomoto, Matsuda, and Hoskins Bonin high

Comparison: Isentropic PV

Figure 30: IPV on 350 K at Day 10 for the control,
no W Pacific, and no Silk Road runs
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Comparison: Isentropic PV

Figure 31: IPV on 350 K at Day 15 for the control,
no W Pacific, and no Silk Road runs
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Summary of climatological heating

experiments

• The equivalent-barotropic anticyclone near Japan
is successfully simulated with a simple GCM.

• The existence of anticyclone without the Western
Pacific heating shows the lack of importance of
this heating.

• Removal of the Silk Road cooling weakens the
anticyclone: the remote descent creates the Bonin
high.

• The develpment of anticyclone can be understood
in terms of negative PV anomaly over Japan.
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Mechanism for the Silk Road pattern

and Bonin high

The Asia  jet

H

Q20

30

40

North

60 90 12030

Descent

H

East

Figure 32: Schematic diagram illustrating mechanism
for the Silk Road pattern and Bonin high
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Conclusions

Base upon the foregoing dynamical consideration,
climatology, and numerical experiments, the
following hypothesis is proposed:

• The Indian heating, off the equator during the
summer monsoon, creates the Asia jet and zonal
temperature gradient.

• The descent near the Aral sea and East
Mediterranean sea induces the stationary Rossby
wave on the jet.

• The Rossby wavepacket propagates along the jet
converges near Japan and creates the Bonin high.

• The Bonin high is enhanced by the local diabatic
forcing. The PJ pattern may be in phase.

Corresponding author : ENOMOTO Takeshi eno@aos.eps.s.u-tokyo.ac.jp
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