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Introduction, 1: Why do we care?

Image from Jean Lynch-Stieglitz, Georgia Tech
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Introduction, 1: Why do we care?

Net infrared radiative flux at earth’s surface is relatively small; there is
a rough balance between insolation and latent + sensible heat flux;

Latent � sensible globally (and over oceans especially);

Infrared emission to space (balancing all non-reflected sunlight at top
of atmosphere) comes mostly from high altitude;

Moist convection is essential for moving energy from the surface to
high altitude where it can be emitted to space.
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Introduction, 2

Also, moist convection controls the morphology of weather on earth.
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Rayleigh-Benard convection, 0

This treatment of dry convection between parallel plates
(Rayleigh-Benard) is taken from Kundu, Fluid Mechanics, but also draws
from Emanuel, Atmospheric Convection (1994).
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Rayleigh-Benard convection, 1

Boussinesq fluid with Cartesian velocity component ũi , pressure p̃,
temperature T̃ . Two parallel plates, infinite in horizontal extent, separated
by distance d ; one is at z = −d/2, other at z = +d/2. Lower plate is at
temperature T̃ = T0, upper at T̃ = T0 −∆T . Linear equation of state,
thermal expansion coefficient α, thermal diffusivity κ, viscosity ν.

ρ = ρ0[1− α(T − T0)] (1)

d ũ

dt
= − 1

ρ0
∇p̃ − g [1− α(T̃ − T0)]k̂ + ν∇2ũi (2)

dT̃

dt
= κ∇2T̃ (3)

∇ · u = 0 (4)
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Rayleigh-Benard convection, 2

Now define perturbations about a basic state of no motion as variables
without tildes:

ũi = ui (x, t) (5)

T̃ = T (z) + T (x, t) (6)

p̃ = P(z) + p(x, t) (7)

The basic state must satisfy

0 = − 1

ρ0
∇P − g [1− α(T − T0)]k̂

with k̂ the vertical unit vector. Thus

1

ρ0

∂P

∂z
= g [1− α(T − T0)]k̂ (8)

0 = κ
∂2T

∂z2
→ T = T0 − Γ(z + d/2), Γ =

∆T

d
. (9)

Is this state stable to small perturbations?
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Rayleigh-Benard convection, 3

Subtract the equations for the basic state from the total equations, and
linearize, assuming small perturbations, to obtain

∂ui

∂t
= − 1

ρ0

∂p

∂xi
+ gαTk̂ + ν∇2ũi (10)

∂T

∂t
− Γw = κ∇2T̃ (11)

∇ · u = 0. (12)

The boundary conditions are (using no-slip):

u = v = w = T = 0, z = ±d/2.

Also, by continuity ∂w
∂z = 0 at the walls. (Or, we can use stress-free,

∂2w
∂z2 = 0.)
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Rayleigh-Benard convection, 4

Now in steady state the advection and diffusion terms must balance, so
scaling analysis requires that

Γw ∼ κT

d2
,

but T ∼ Γd , so
w ∼ κ

d
.

There are two non-dimensional parameters. The ratio of the buoyancy to
viscous forces is:

gαT

νw/d2
∼ gαΓd

νw/d2
∼ gαΓd4

νκ
≡ Ra,

the Rayleigh number. Then the other is the ratio of the diffusivities, or
Prandtl number

Pr =
ν

κ
.
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Rayleigh-Benard convection, 5

Now we skip a lot of math, summarizing the steps in words. By
substitution we can reduce the equations to just two, for w and T . Use
the method of normal modes. Since the PDEs have constant coefficients,
we can assume exponential solutions:

w = ŵ(z) exp(ikx + ily + σt), (13)

T = T̂ (z) exp(ikx + ily + σt), (14)

where σ is complex, σ = σr + iσi . T̂ and ŵ are also complex. It is useful
to define K =

√
k2 + l2. (Note there is rotational symmetry, x and y are

interchangeable.)

The first key result is that σ is pure real in this problem, σi = 0. There
are no oscillatory solutions. This means that the marginal stability curve
(in K ,Ra space) is that for which σ = 0 (rather than just σr = 0).
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Rayleigh-Benard convection, 6

We do not solve the full stability problem. Rather, we find the value of K
for which σ = 0 at a given Ra.

Problem reduces to a 6th order linear elliptic PDE with 6
homogeneous BCs.

We non-dimensionalize distance by d , T by ∆T , w by κ
d .

Pr drops out of the problem (for marginal stability).

Because the BCs are symmetric, the eigenfunctions in z can be either
symmetric or antisymmetric about the midpoint z = 0.

The smallest Ra for which σ = 0 — the value above which we expect
to find motion — comes from the gravest even mode. This is verified
by experiment.

The problem is mathematically much simpler if we use stress-free
BCs; the results are quantitatively, but not qualitatively different from
the no-slip case (in all ways other than the horizontal velocity at the
boundary) so we focus on that case.
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Rayleigh-Benard convection, 7

The even solution for the stress-free eigenfunctions is

w = A sin nπz , n = 1, 2, 3...

The critical Rayleigh number is

Ra =
(n2π2 + K 2)3

K 2
.

The lowest value this can take on for any K is found by differentiating
with respect to K ; the result is

Kcr =
π2

2
.

This is (almost) O(1); since we have non-dimensionalized by d , the
horizontal scale of the motion is the same order as the vertical scale.
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The Rayleigh number at which marginal stability of the system occurs is

Racr =
27π4

4
≈ 657,

(somewhat larger for no-slip, but same order of magnitude). For
Ra < Racr , there will be no motion; heat will be transported diffusively
from bottom to top.
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Rayleigh-Benard convection, 8

The horizontal structure of the circulation cells at marginal stability is not
predicted by the theory, since only K , not k or l separately, appears. Any
regular polygons are possible. The detailed pattern is somewhat sensitive
to experimental details, but often begins as hexagons, and forms long rolls
later.

youtube video
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Rayleigh-Benard convection, 9

Taken from Emanuel, 1994.
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Rayleigh-Benard convection, 10

In the atmosphere, the Rayleigh numbers are MUCH higher than critical
— by many, many orders of magnitude. (Diffusivities are small, length
scales are large, heat flux also large.) So it is of interest to say something
about large Ra.
The flow quickly becomes turbulent as one gets much past critical.

youtube video of turbulent 2D convection

The Nusselt number, or nondimensional heat flux,

Nu =
wT

κ∆T

increases with Ra, in a somewhat complex way (several regimes of
different turbulent flow types).
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The details of all the turbulent transitions in Nu are not really relevant to
the atmosphere, because the heat flux in the atmosphere is more nearly
constrained externally than is the temperature.

For our purpose the main quantity of interest in the turbulent solutions is
the mean temperature, T (z). This is close to homogeneous in the interior,
with all the gradient trapped in very thin layers near the boundaries.
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Stable stratification between parallel plates,1

Now consider same situation, but with the top boundary warmer than the
bottom. Then it is completely stable. Just for sake of argument consider
the linear equations in 2D with both diffusivities set to zero:

∂u

∂t
= − 1

ρ0

∂p

∂x
,

∂w

∂t
= − 1

ρ0

∂p

∂z
+ αgT ,

∂T

∂t
+ wΓ,

∂u

∂x
+
∂w

∂z
= 0

where now Γ = (T (d/2)− T (−d/2))/d > 0.
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Stable stratification between parallel plates, 2

The eigenfunctions are the same, and we can show that we get pure
neutral oscillatory gravity wave solutions,

w ,T ∼ sin(nπz) exp(i(ωt + kx),

with frequency

ω2 =
N2k2

k2 + n2π2
,

where
N2 = αgΓ

defines the buoyancy frequency, N.
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Stable stratification between parallel plates, 3

Since for the disturbances of interest in the real atmosphere have
horizontal scales much longer than vertical scales, the most relevant
analogs in the parallel-plate system are also those with k � n, so

ω2 =
N2k2

k2 + n2
≈ N2k2

k2 + n2π2
,

ω ≈ Nk

nπ
. (15)

Thus modes of higher vertical wave numbers (shorter vertical scales)
propagate more slowly. This approximation is equivalent to assuming
hydrostatic balance.
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Stable stratification between parallel plates, 4

The phase speed of wave modes c = ω/k, so

c =
N

nπ
,

but remember that we have nondimensionalized distance by d .
Dimensionally,

c =
Nd

nπ
.

To fix numbers, for the atmosphere N ≈ 2× 10−2s−1, and we may take
the vertical scale d to be the depth of the troposphere, 10 km. That is
broadly consistent with the value c ≈ 50m/s for waves with n = 1.
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A few points about internal gravity waves

1 If there were no boundaries, they would also propagate vertically.
(The atmosphere has no upper lid, though for some purposes can
behave as though it almost does.) The vertical wave numbers would
not be quantized in that case.

2 Putting the diffusivities back in would just make them weakly
damped.

3 Horizontal structure: w and T are in quadrature — as with convective
solutions, but opposite phasing (upward motion cooling vs. warming).
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Basics of the compressible atmosphere, 1

Ideal gas law:
p = ρRT ,

with p pressure, ρ density, T temperature, R gas constant. On large scales
it is a very good approximation to assume hydrostatic balance in the
vertical:

∂p

∂z
= −ρg = − pg

RT
.

T is measured in Kelvin and doesn’t vary that much compared to its
absolute value, so pressure drops approximately exponentially with height:

p ∼ p0e
z/H

where H = RT0/g is the scale height, T0 a reference temperature.
We can also show that the potential temperature,

θ = T (
p0

p
)κ,

with κ = R/cp = 2/7, is conserved in the absence of friction or heating of
the dry fluid. It is related to specific entropy by s = cp ln θ + constant.
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Basics of the compressible atmosphere, 2

Because of hydrostatic balance on large horizontal scales, we can use
pressure as a coordinate. In this coordinate the vertical velocity is

ω =
dp

dt
,

and the mass conservation equation is isomorphic to the incompressible
one (although we do not assume incompressibility)

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= ∇ · u = 0.

In the horizontal momentum equation, instead of the pressure gradient on
a constant height surface, we have to write the gradient of geopotential
height, φ = gz , on a constant pressure (isobaric) surface. The
geopotential height is found by integrating hydrostatic balance using the
actual temperature

φ =

∫
gdz =

∫ ps

p

RT

p
dp =

∫ ps

p
RTd ln p.
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Basics of the compressible atmosphere, 3

Including Coriolis parameter f = (2Ω sinλ)ẑ , (λ = latitude) the primitive
equations in p coordinates are:

dv

dt
+ f × v = −1

ρ
∇pφ+ F

∂φ

∂p
= α = −1

ρ

dθ

dt
= Q

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0

dq

dt
= e − c .

where v = (u, v), d/dt = ∂/∂t + u∂/∂x + v∂/∂y + ω∂/∂p, and
∇pφ = ∂φ

∂x x̂ + ∂φ
∂y ŷ , and all horizontal derivatives are understood to be

taken along isobaric surfaces. Heating is Q, friction is F, q specific
humidity (defined soon), evaporation and condensation of water are e, c .
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Basics of the compressible atmosphere, 4

We are working in a local Cartesian planar approximation, so there are no
metric terms, and horizontal coordinates are x , y instead of latitude and
longitude.

We will represent the Coriolis parameter by the β - plane approximation
(first two terms in Taylor expansion of the sine function),

f = f0 + βy ,

where f = 2Ω sinλ0 and β = df
dy = (2Ω cosλ0)/a, a is earth radius, λ0 a

reference latitude.
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Basics of the compressible atmosphere, 4

If we wish, instead of using potential temperature, we can use dry static
energy,

s = cpT + gz

(not to be confused with entropy although the letter s is also used). s is
conserved for dry adiabatic transformations in which hydrostatic balance is
maintained, and thus for large-scale motions we can write

ds

dt
= Q
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Basics of the compressible atmosphere, 5

The primitive equations describe the motions on large scales. On
sufficiently small horizontal scales (L ≤ 10 km) hydrostatic balance may
break down. We may consider the vertical momentum equation for
convective motions to be (in height coordinates)

dw

dt
= −∂p

∂z
− ρg ,

or defining a hydrostatically balanced component

∂p

∂z
− ρg ,

then
dw

dt
= −∂p′

∂z
− ρ′g ,

where p = p + p′, ρ = ρ+ ρ′.
In parcel theory, we will neglect the pressure term, and consider just

dw

dt
= −ρ′g .
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Basics of the compressible atmosphere, 6

While temperature decreases with height in the atmosphere, potential
temperature increases with height. This means the atmosphere is stable
to small vertical displacements — at least as long as condensation of
water vapor does not occur.

The buoyancy frequency in the compressible atmosphere, N, is

N2 =
g

θ

∂θ

∂z
,

or in pressure coordinates,

N2 = −ρg
2

θ

∂θ

∂p
.
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Annual mean temperature vs. latitude and height (source: ECMWF,
ERA40 Rreanalysis).
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Annual mean potential temperature vs. latitude and height (source:
ECMWF, ERA40 Rreanalysis).
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A little basic GFD, 1

If we neglect friction, time rate of change, and inertia, the horizontal
momentum equation becomes

f × v = −1

ρ
∇pφ,

or

fu = −∂φ
∂y

−fv = −∂φ
∂x

which is geostrophic balance — flow parallel to isobars.
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A little basic GFD, 2

500 hPa geopotential height, wind and vertical vorticity (∂v/∂x − ∂u/∂y)
over USA one day last week
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A little basic GFD, 3

Combining geostrophic and hydrostatic balance with the ideal gas law
leads to the thermal wind relation

∂u

∂p
=

R

fp

∂T

∂y
,

∂v

∂p
= −R

fp

∂T

∂x
,

which says that the vertical shear of the horizontal wind is
proportional (and perpendicular) to the horizontal temperature
gradient.

Note the factor ∼ 1/f on the RHS, which implies that to the extent
thermal wind balance holds, large horizontal temperature gradients
cannot exist in the tropics, unless accompanied by very large shears.
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A little basic GFD, 4
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A little basic GFD, 5

Surface pressure map (cint=5hPa) from a random day, May 15, 2005.
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A little basic GFD, 6

Surface temperature map (cint=5C) from a random day, May 15, 2005.
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A little basic GFD, 7

Effective black body temperature (C) seen from space, from a random day,
May 15, 2005.
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A little basic GFD, 8

The natural horizontal scale for motions which are close to geostrophic
balance is the deformation radius, or Rossby radius, Ld ,

Ld =
c

f

where c is the gravity wave speed. (Thus motions with different vertical
scales have different Ld . This scale emerges, for example, from the
geostrophic adjustment problem.

For tropical dynamics we may take the reference latitude in our β-plane
approximation to be λ0 = 0, thus f = βy is the equatorial β-plane
approximation. In this case the natural scale that emerges is the
equatorial deformation radius,

Lβ =
√

c/β.
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Moist Thermodynamics, 0

This treatment of moist thermodynamics draws on Emanuel’s Atmospheric
Convection as well as Bohren and Albrecht’s Atmospheric
Thermodynamics.
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basic moisture variables, 1

Basic variables to describe the water vapor content of the atmosphere
include

mixing ratio r , which is the mass of water vapor divided by mass
of dry air;

specific humidity q, which is the mass of water vapor divided by
the total mass of air (dry air plus water vapor);

vapor pressure e, which is the partial pressure of water vapor;

vapor density ρv , which is the mass of water vapor per unit volume.

Then, r = ρv/ρd , where ρd is dry air density;
q = ρv/(ρd + ρv ) = r/(1 + r).

In the earth’s atmosphere, since it is always the case that r � 1
(maximum values are a few percent), q ≈ r .
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basic moisture variables, 2

Analogously to r , we can also define the atmospheric content of
condensate — liquid and ice. These are assumed to be in the form of
small particles falling at their terminal velocities. If the terminal velocities
are small compared to the vertical air velocity, we call them cloud water
or cloud ice; if the fall velocities are comparable to or greater than the air
velocity we call them precipitation (rain, snow, graupel, hail).

liquid water mixing ratio rl ,

ice mixing ratio ri ,

total water, rT = r + rl + ri .

We can define also specific humidities of liquid and ice analogously to
vapor.
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basic moisture variables, 3

Some more relationships between variables will be useful. Using the ideal
gas law separately for both dry air and vapor, with gas constants Rv and
Rd we can write

r =
e/RvT

pd/RdT
=

Rd

Rv

e

p − e
= ε

e

p − e
≈ εe

p

(since we can assume e � p). Here p is total pressure, pd dry air pressure,
and

ε =
Rd

Rv
≈ 0.622.

We also define the relative humidity H:

H =
e

e∗

Where e∗ is the saturation vapor pressure. The saturation vapor
pressure is the maximum vapor pressure which can exist in equilibrium
over a liquid water surface (or a solid ice surface).
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basic moisture variables, 4

The saturation vapor pressure e∗ is a function of temperature, defined by
the (nearly exact) relation:

de∗

dT
=

Lve∗

RvT 2
, (16)

where Lv is the latent heat of vaporization. (16) is the
Clausius-Clapeyron relation. Lv is itself a function of temperature, but a
weak one; in many cases we can assume it constant. An approximate
integration yields

e∗ = 6.112 exp(
17.67T

T + 243.5
),

where T is in Celsius (not Kelvin) and e∗ is in hPa. This is valid over
liquid; a similar relation holds over ice, but with different numbers.
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basic moisture variables, 5

It is also useful to define the dew point, or temperature to which a given
parcel would have to be cooled at constant pressure in order for saturation
to occur. Dew point is a function of specific humidity and pressure.

The difference between the temperature and dew point, T − Td , is
sometimes called the dew point depression. It is related to saturation
deficit, which may be defined e∗ − e, q∗ − q, or r∗ − r .
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phase changes of water in the atmosphere,1

When e > e∗, condensation is possible. (Any excess e − e∗ > 0 is called
supersaturation.) Water vapor can condense into liquid or solid particles
by homogeneous nucleation (spontaneous clumping of water molecules),
or heterogeneous nucleation (condensation onto a pre-existing liquid or
solid particle). Pre-existing particles on which condensation can occur are
called cloud condensation nuclei (CCN). Heterogeneous nucleation will
occur first if CCN are present.

In the atmosphere, there are always some CCN present for condensation
into liquid. Homogeneous nucleation of liquid droplets is believed not to
occur, nor is significant supersaturation over liquid. One can assume
e ≤ e∗.
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phase changes of water in the atmosphere, 2

On the other hand, ice nuclei, onto which either liquid drops or water
vapor can freeze, are not so universally present. Significant supercooling
(existence of liquid water at T < 0◦C ) can occur, as can significant
supersaturation of vapor with respect to ice.

At temperatures T < −40◦C , homogeneous freezing of liquid takes place
and all condensed water can be assumed to be ice. However in the range
−40◦C < T < 0◦C , the phase of condensate may not be known a priori,
and depends on the presence or absence of ice nuclei.

At T > 0◦C , melting of ice takes place quickly. (This can be visualized in
radar images by the thin bright band, we will see later.)
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phase changes of water in the atmosphere, 3

Although there are always enough CCN for homogeneous nucleation,
variations in the distribution of CCN can be important to the properties of
any clouds that form.

Where there are few aerosols (atmospheric liquid or solid particles), cloud
drops will be fewer and larger for the same amount of liquid. Where the
number density of aerosols is higher, cloud drops will be greater in number
and smaller in size.

In aerosol-rich environments, clouds may be optically thicker — more
reflective of sunlight — and less likely to form precipitation (large drops).
These effects are most apparent in shallow, non- or weakly-precipitating
clouds.
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phase changes of water in the atmosphere, 4
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Effect of water on air density, 1

Water vapor has a different heat capacity than does dry air, and thus the
mixture of the two also has a different heat capacity than dry air would
(slightly, since e � p, ρv � ρd etc.). The effective gas constant for the
mixture is

R ′ ≡ Rd
1 + r/ε

1 + r
> Rd

The margin by which R ′ exceeds Rd depends on the humidity. The
mixture obeys the ideal gas law

p = ρR ′T

α =
R ′T

p
,

where α = 1/ρ is the specific volume.
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Effect of water on air density, 2

The direct effect of water vapor on air density is usually measured by the
effective temperature which dry air would need to have in order to have
the same density as moist air with a particular temperature and humidity.
This is called the virtual temperature, Tv , defined by

RdTv = R ′T ,

thus

Tv = T
1 + r/ε

1 + r
≈ T (1 + 0.61r),

with T now in Kelvin. The difference term 0.61rT is sometimes known as
the ”virtual temperature effect”. It is small, generally, since r is.
Note that the virtual temperature effect is only the direct effect of vapor
on density. It has nothing to do with phase change.
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Effect of water on air density, 3

The moist enthalpy (really specific moist enthalpy)

k = (cp + rT cl)T + Lv r ≈ cpT + Lvq

is conserved under phase changes between liquid and vapor at constant
pressure. (cl is liquid water heat capacity).

Thus the temperature increase for condensing a quantity ∆q of vapor is

∆T = Lv ∆q/cp.

We can now show that compared to the virtual temperature effect, phase
change is by far the more important process by which water vapor
influences the atmospheric circulation.
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Effect of water on air density, 4

The virtual temperature effect is 0.61rT ; on earth r ≤ a few percent. Let
r = 0.03, then for T = 300K , the virtual temperature effect is ∼ 5K . This
seems large, but water vapor gradients tend not to be large, and in any
case the dynamics will simply adjust; the pressure field simply
hydrostatically adjusts to Tv instead of T .

By contrast condensation tends to be localized, and much larger. The
effect on temperature of condensing all the water in our parcel with
r = 0.03 is

Lv r/cp ≈ 75K !

It will not all condense at once, but the enthalpy is there.
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Effect of water on air density, 5

Once there is condensate in the air, we assume it to be in suspension,
falling at terminal velocity. The mass of the condensate then simply can
be considered to contribute directly to the density of the air. This effect is
called condensate loading.

Condensate loading, particularly by large precipitation particles, can be
important in the generation of convective downdrafts. However in most
other circumstances we will ignore it.
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Conserved variables under phase change, 1

Condensation and evaporation of water, if done adiabatically — slowly, in
equilibrium, with the vapor always at saturation — is a thermodynamically
reversible process. Thus we can define a moist entropy which is conserved.
That entropy can be related to a potential temperature - like quantity,
called equivalent potential temperature, θe :

(cpd + rT cl) ln θe = s + Rd ln p0,

where cpd , cl are dry air and liquid water heat capacities and p0 is a
constant reference pressure; s is the moist entropy (an expression for which
we will not explicitly write here). This is the reversible θe , conserved if all
water remains in the parcel. It is changed by any irreversible process —
heating, friction, non-equilibrium water vapor transport (diffusion), phase
changes which don’t occur at equilibrium. If the air is purely dry, rT = 0,
it reduces to the dry potential temperature, θ.
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Conserved variables under phase change, 2

The reversible θe is not conserved if precipitation occurs, since then water
mass is irreversibly removed from the air. We define pseudo-adiabatic
process as one in which all condensate is removed from the air as soon as
it is formed. Then the pseudoadiabatic potential temperature, θep, is the
temperature reached by pseudoadiabatic ascent to p = 0 (so all water is
removed) and then dry adiabatic descent to the reference pressure.

If atmospheric processes were fully reversible, there would be no rain (or
snow). If they were fully pseudoadiabatic, there would be no clouds.
Clearly, the real atmosphere lies between these two extremes.
θep can be computed by an approximate formula which is sufficiently
complicated as to not be worth writing down. (E.g., see Emanuel, p. 132)
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Conserved variables under phase change, 3

The moist static energy is defined as

h = (cpd + rT cl)T + Lv r + (1 + rT )gz ,

where g is gravitational acceleration and z is altitude. h is conserved for
adiabatic transformations in which mass is conserved, and in which the
pressure remains hydrostatic. Since rT can be taken small, we can (and
will) usually make the approximation

h ≈ cpdT + Lvq + gz .

We have also defined the dry static energy, s = cpdT + gz (not to be
confused with moist entropy), such that h = s + Lvq.

In many situations one has a choice whether to work with h or θe (or θep).
This is to some extent a matter of taste. h is an energy, θe is (basically)
an entropy. In practice they are conserved (or not conserved) to
comparable extents. h is algebraically simpler to use.
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Mixing, etc.

Because of the nonlinearity of the Clausius-Clapeyron relationship, things
can happen in a moist fluid that are impossible for a dry fluid.

1 A mixture of two unsaturated parcels can become saturated. (This is
how you can see your breath on a cold day.)

2 A mixture of a positively buoyant (but saturated) parcel and a neutral
(unsaturated) parcel can become negatively buoyant. (This is one way
convective downdrafts can form, though not the most important.)

3 Condensate can fall through the air (precipitation). Precipitation can
generate downdrafts by

1 Direct momentum transfer (condensate loading);
2 Evaporative cooling in unsaturated air.
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