Kyoto FDEPS lectures 4-7 xi 2007
Dynamics of oceans and atmospheres
P.B. Rhines
University of Washington

1. rotating, stratified fluids: oceans and atmospheres
— vorticity: a vector-tracer in classical homogeneous fluids
geostrophic adjustment, thermal wind

2. wave dynamics: fundamentals, group velocity,
energetics, ray theory

potential vorticity (PV)
- vortex stretching, Prandtl’ s ratio, geography of PV
3. Rossby waves

4. instability => geostrophic turbulence; subtropical
gyres: dynamics, jets and gyres

5. meridional overturning circulations and the
thermohaline circulation

6. Seminar: subpolar climate dynamics observed from
above and below: altimetry and Seagliders
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Andy Goldsworthy
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water evaporates
from the Great
Lakes when cold
north winds blow
over them. It
soon condenses
back into water,
as cloud droplets
which then rain
or snow
out...The lake
water has
become cloud,

cloud piles up as
- deep snow,
downwind of the

called ‘lake-effect
snow’.



SeaWiFS Chlorophyll-a Concentration (OC4 algorithm)
16-30 April 2003 Composite

Sea Surface Temperature
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Erika Dan temperature section, 60°N

Labrador-Greenland-Rockall-Ireland warm, saline water moving
Worthington+Wright, 1970 north from the subtropics
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shallow continental shelf circulation (unresolved in CCMs) upper ocean low-salinity

deep overflows from Denmark Strait/I.S. Ridge waters



Five Davis Strait Seaglider temperature sections showing Arctic

cold water entering the Labrador Sea, have unprecedented spatial
resolution Eriksen & Rhings UW
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boundary
mixing/
upwelling

entrainment

broad upwelling, yet much of it recirculates below the mixed layer



Jets occur in rotating fluids for many reasons, here driven by thermal convection in a bowl-shaped basin. The
jets in the lefthand image occur due to the very strong topographic PV gradient, at high rotation (low Rossby
number). Condie & Rhines “Topographic Hadley Cells JFM 1994; Rhines ‘Jets’, CHAQOS 1994,

high rotation low rotation




spatially homogeneous, density stratified rotating convection viewed from the side:




t=74-76 e SST during March 2004

# The subtropical front is a
zone of several fronts.

e Density effects of T and
S mostly compensate near
30° N, much less so near

287 N

e -5 mark two 100-km-
long surveys at beginning
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and end of restratification
study following a drogued
Hoat

Hosegood, Gregg, Alford (2007)




Instantaneous Layer 6 Potential Vorticity
Flat Bottom 0.4% Bottom Slope

potential vorticity
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Hallberg & Rhines Dev. in Geophysical Turbulence, R. Kerr Ed., 2000



Theta-S diagram for Atlantic ocean (Southern Ocean
to subpolar North Atlantic)




- cylinder wake in a soap film

Marvin Rutger
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Figure 2.1
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Artificially generated fields of ¥ {or pressure),
velocity components u, v and vorticity €. The
azimuthal wavenumber dependence is fixed. (a), for

scalar-wavenumber spectrum E = ke ﬁ2/3k; {b), for
E=1.0 (k <58), E=(k/5) % (k > 5}); (¢) for E = const.
The discrimination between associated fields ¢, u, v, C
increase with spectral bandwidth.

o



textures of different dynamical variables




Vorticity in a ‘classic’ non-rotating fluid




Vortex lines move with the (ideal) fluid....A famous billboard in Times Square,
New York, 1950s. Note the size of the vortex rings, which are real.
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Broadway's Billboard Creator Dies
Douglas Leigh, who helped turn Broadway into the  Tuesday. He was 92, Mr, Leigh also bathed the tops | A

Great White Way with spectacular billboards like  of many of Manhattan's skyscrapers, including the ch
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vortex lines are ‘vector tracers’ that move with the

fluid







vorticity: teaching tornados

‘Levitated’ balls with strong
vertical and hotizontal shear
layers contain radial/vertical
viscous overturning


















Vorticity and forces:

I=% foxrdV
or one-half the dipole moment of the vorticity field is equal to the ‘impulse’, or time-
integrated force exerted on a fluid...2/3 of which appears as momentum change of the
fluid in 3D (the actual number depends uncomfortably on the shape of the control
volume, as it recedes to infinity).

in 2D the expression for impulse. ‘Y2’ is absent, vet the momentum chanoe in a 2D
p p 5 > Y g

fluid is still Y2 1, that is ¥2_f o x r dV) r=position vector, w=vorticity vector  Saffman,
Vortex Dynamics, CUP

the rest of the impulse
exerts a pressure force
on the fluid at a great
distance; this confusion
Is resolved if the fluid

Is slightly compressible
in which case all the
Impulse appears as
momentum.




dipole wakes in the
wake of the
Aleutian Islands
express the force
exerted on the
mountain slopes




Planetary Rotation:
otves stiffness to the fluid, creates ‘tall’ flow structures
In our discussion of vortex line tipping and stretching we can
now replace vorticity w by absolute vorticity o + 2€:
the planetary vorticity amplifier



Rotating fluids are filled with
‘tall’ structures

Andy Jackson, WUN 2004



Influence of rotation I:
The Earth’s inner solid core 1s visible in the magnetic field; note the
two maxima of the normal non-dipole field

North Polar View (1980)

After Gubbins & Bloxham (1985)



Morphology of magnetic field lines
from numerical dynamo simulation
(Glatzmaier & Roberts, 1995)




Jets on Jupiter: a good place to think about tall structures vs.thin, gravitationally stable
layered Earth atmosphere. Here a deep, non-hydrostatic numerical model allows
structures to line up with the rotation axis.

(Heimpel, Aurnou & Wicht, Nature 10 Nov 2005)



Figure 7b. As in ligure Ta, except at double the rotation rate. Now an intricate banded
circulation occurs, in which the basic pair of gyres is riddled with jets directed primarily
along depth contours, but connecting across them (Boubnov and Rhines, priv. comm.)

planetary rotation can
organize the chaotic
textures of turbulent flow
into coherent structures

GFD lab Univ of Washington
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‘e 1. Zonal component of velocity averaged over 3 years at 400m depth
a high resolution ocean model. Color saturates at +/- 0.06 ms™".

Maximenko et al
2005



The geopotential: potential function @ for gravity and

centrifugal rotation etfects




the geoid @: for a symmetric model of Earth’s gravity




The presence of planetary vorticity amplifies effects of

line-stretching:

a ring of air moved 1000 km north gains westerly velocity
of about 100 m sec! (for f=10sec!) There is not enough energy
available to utilize this mode: the Hadley cell is limited in north-south
extent.

Forces (eddy momentum flux from PV stirring) and non-symmetric
circulation are required to support extensive meridional excursion.



A 2mm glass cylinder is held vertically...at rest
asftc non-rotating frame...in a rotating

fluid. ..

Its 3D turbulent wake generates cyclonic tall
vortices

(Cormac Flynn, GFD Lab, Univ. of Washington also see
computer sims of Smith & Waleffe Phys FI 99

Morize,Moisy & Ribaud, PhysFl 05)
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cylinder removed, showing final barotropic

cyclones
Turbulent flows exhibit remarkable transformation between

non-geostrophic and quasi-geostrophic flow, in both
directions. Here, a 3D turbulent cylinder wake converts into
a 2D field of cyclonic vortices. This is as if you inserted
your finger in the fluid as it rotates rapidly.




the surface of a rotating fluid, slightly moving ( Rossby
number << 1)







Dynamic height along latitude 60N from surface to stratosphere
(1000 HPa to 30 HPa) for days 1-100 in 1996

30 HPa —

1000 HPa
longitude O 180 0




Ocean currents at 50W longitude southeast of the Gulf
Stream, over 7 months, showing very similar structure
throughout water column: a strong barotropic mode

600 m

below surfoc

I500m

each line 1s a
horizontal current
vector plotted with
eastward flow
pointing upward

3000m

Cm/sec

speed

May Sept Dec 75



rotational stiffness is related to inertial waves (often wave
motions express restoring forces that strongly effect steady

circulations too).




inertial oscillations viewed by the movement of the

water surface (essentially a pressure field).




geostrophic balance: the sea surface at the Gulf
Stream Tom Rosshy, Oleander project, adcp based
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Fia. 7. Geostrophic sea level relative to 39°23'N, 72°29'W, just north of the
shelfbreak, estimated from cross-track velocities from south- (red lines) and
northbound (green lines) transits. The outliers (two to the south and one to the
north} presumably result from a persistent compass errors of O( 1) during those
transits, The mean difference and standard deviation across the GS alone equals
1254021 m(N=8T)and 1.27 £ .15 m (N = 39) for the south- and northbound
transits, respectively.



geostrophic balance: the pressure field along north-south lines
in the atmosphere; day 1 1996 and day 180 1996

blue: 500 HPa dynamic height
red: sea-level pressure NCEP reanalysis data

2300 vs atitude day 1 and slp™4-200 .. rescale to be psi 1996
G000 r 1 r 1 T T T 1 T

5600
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Z500 vs |atitude day 180
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steady, non-dissipative flows have a powerful Bernoulli function
conservation principle: both the pressure variation along a
streamline and across streamlines is known from the velocity

field.

* example: 2-dimensional flow around a circular cylinder.
Adding rotation simply adds a pressure field that is a
function of ¢. This shows how geostrophic flow has
pressure gradient nearly perpendicular to the velocity, yet
always with important pressure variations along streamlines
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2D flow
around a
circular cylinder

Fig. The flow field () is at upper right. The pressure field for
different values of the Rossby number, Ro = o0, 3.3 and 1.1



The pressure field for flow
round a cylinder in a single-layer
rotating fluid, at moderate
Rossby number 1s simply the
pressure for a non-rotating flow
plus a function of ¢







buoyancy: it’s tricky
DECEMBER

SUNDAY




Geostrophic adjustment: initial value problem that
ends up as a geostrophic flow










geostrophic adjustment: scenes from the North Pacific
subtropical front region: Gregg, Brainerd, Hosegood, Alford

Mixing Versus Mixed Layers

s Mixed Layers: Helatively homoge-
nous relative to desper water, &.g.,
Ara <01 kgm™—®

s Mixing Layers: active turbulence
generated at the sorface, e.g.,
lil:lﬂ'EmE} <12

o In this example, mixing drops
where Acg R 0,001 kgm—2

"—5:'--., war agzn W5

A~ AR et LT | 'l s Mixed layers may not have been

'd i
L wl d ai d i 1 v m
P T mixing for hours to days

Ed Wig'

8 To compare with Ferarri & Rud-
nick, we consdered mixed layers
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Brainerd £ Grege [1095)

— Because insolation accounted for only == 60% of restratifica-
tion during a diurnal ML cycle observed with contirmous mi-
crostructure profiling, Brainerd & Gregg (1993) inferred that

observed 885 changes resulted from ‘slumping’

— Rudnick & Ferrari (1999) and Ferrari & Rudnick (2000) re-
ported that 20 m to 10 krn ML T & S gradients have compen-
sating density effects



Rudnick & Ferrari (1999) Wavelet Coefficients

Rudnick & Ferrari {1008)

e Morlet wavelet: E{“ﬂﬂ}Ewﬂ"-"

# Constant-depth run at 50 m

# Max variability 0.02 kgm—3

e All are close to H, = 1, den-
sity compensation




Evolution of Density Surfaces in Float-centered Coordinatess
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Hosegood, Gregg, Alford (2007)
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e Group 64: Convecting
with vertical isopycnals

® Group 68: Slumping be-
gan just before convec-
tion ended

e Group 70: Mixed layer
restratified 5.2 hours af-

ter convection ended

e Group 73: Light water

added at surface

e Group 76: 8 hrs of con-
vection homogenized top

half of ML
® Group 78: 12 hrs of con-

vection homogenized all

of ML




Mixed Layer Evolution at 28 °N

etl: h,, =
20 — 80 m,
light winds,
weak convec-
tion

J, (Wig™ x107)

MMF Groups 7 8 @

51 'lermT

o t2: Heavy
rain capped
remnant ML

10 g, (kgm™)

5 ‘.G
LY ]

ili e t3: Winds
= i, & cold air
£ ‘MJ‘ “‘ 1,, ! deepened
3 AN m'.' T ! i

% J& L | ML to 80 m
- jlog,s (Wkg') e t4d: ML
' ; -: ‘slumped’

?i_m without rain

a2 or wind

! (Decimal day, 2004)
Hosegood, Gregg, Alford (2007)

® € estimated from scales of density overturns

e SWIMS data available below 15 m, missed restratification start
during t4 13



Comparison with Tandon & Garrett (1994, 1995)

® Storm-driven homogenization of surface water with a horizontal
buoyancy gradient, b,, leaves a mixed layer with vertical
isopycnals

® Geostrophic adjustment after the storm generates near-inertial
motions that displace the isopycnals about their average
position

by(z 4+ H/2)
s===g ¢
® Resulting in an oscillating stratification: N2 = B2(1—eoaft)

— cosft)

.fﬂ

—The model does

not consider a di
urnal cycle after
the storm

(Decimal day 2004)




Wavelet Coefficients Scaled by Density Contribution of T/, S’
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e Morlet wavelet: e(®/2)e*™*

® Data interpolated to 20 m

® Scales are 2 km (red), 5 km
(blue) and 10 km (green)

® Dash-dot lines are fits with
slopes at lower right

o A & B tend to R, = 1, con-

sistent with northern front

eC & D tend to R, =
T-dominated, consistent with
southern front

® D conditions closest to those

of Ferrari & Rudnick



Velocity spirals: thermal wind balance
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one year current records at 2000, 3000, 3800m depth
in the deep western boundary current
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Stommel’s cooling
spiral at OWS Juliette
(52.5N, 20W) 1s a

symptom of upward

Qnet

Plot of (u,v) velocity
components with depth
as a parameter from
hydrographic data
Stommel, PNAS 1979

Proc. Natl. Acad. Sci. USA 76 (1979)  251¢
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F1G. 1. The curved hodograph, with depths marked in meters,
is in geostrophic velocity (u’,v’), relative to 850 m, at “Juliette” (52.5°
N, 20° W) computed from the horizontal density charts in Dietrich's
Atlas (1). The lines are the u,,v, [3] displayed on the —u,,—v, plane.
The rather broad common intersection defines that value of —u,,—v,
which satisfies all the equations best.






rotating and stratified flows..over simple mountains
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group velocity theory: stationary phase integral










Moiré patterns and group velocity

M































In very shallow water, undular bores occur with both gravity- and
capillary nature (backward and forward of the bore front,
respectively); here in a 5m channel.







(A)

(BY =

104

204

5

20 to B0 em
8010 100 c

100 to 120 em's -|-
120+ cmis st

A0 -0 =400 -200 0 200
Distance [m1] W







The table rotation rate is oscillated about its mean value to
excite waves, with a small mountain. Fast, long hydrostatic
Kelvin waves ans short non-hydrostatic inertial waves. 1 m

diameter cylinder, GFD Lab Univ of Washington




Kelvin waves, inertial waves in shallow rotating fluid




internal gravity waves: rays and modes
Jim Renwick, GFD lab Univ of Washington
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Waves: modes and rays and wave/mean-flow interaction at the base of the

mixed layer










internal gravity waves driven by oscillating 2
dimensional cylinder. Viewed with shadowgraph
Notice reflection at base of mixed layer

GFD Lab, Univ of Washington







frequency close to N..some generation of harmonics

and some turbulent mixing




internal gravity waves: a circular cylinder moves to the
right steadily, horizontally




notice the fluid which is pushed ahead of the cylinder, with too
little kinetic energy to rise against the stratification. In a
reference frame moving with the ‘mountain’ this would be
blocked fluid upstream of the mountain. It is transmitted by
long, low frequency gravity waves, visible in previous slide










geostrophic adjustment in a cylinder with 2 —layer stratification.

A ball of fluid is injected at the interface and allowed to ‘slump’
and spin. Shall we try this during the lecture?













Rossby waves (barotropic mode) evolving in x and
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time (left); dispersion relation (right)
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Rossby waves generated by an oscillating vorticity source
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Rossby wave Green function for an oscillating vorticity

source at the origin: with free-surface divergence
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barotropic Rossby waves excited by uniform westerly (eastward)
zonal flow past a cylindrical mountain (McCartney JFM 1975)
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Subtropical gyre
dynamics, thermo-
dyanamics and

biology

Palter, Lozier & Barber
Nature 2005

T5EW BPW  45°W  30°W  15°W

Figure 5 | Propertics of the North Atlantic subtropical gyre a, Annual
mean SeaWils| chlorophyll @ concentration, [ Chla], with a log scale for the
colour axis; by, vertical transport calculated from the annual mean wind

stress curl™; €, climatological mean eddy kinetic energy™, EKE;

d, climatological March mixed layer depth™, MLD; e, potential vorticity on
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approximation for the base of the STMW; and b, the steength of the
gradient at the nutricling, showing the wedge of STMW as a deplet
nutristad.



Williams,
Follows,
Migillicuddy
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Figure 1 Annual primary productivity (coloured
valuesing C m* }fr'l}, and upwards vertical
velocity of water (contoured in m }'r'J] inthe
North Atlantic. Productivity reaches maximum
values of 400 g C m ™ yr' where there are high
levels of nutrient input from upwelling; and it has
minimum values of 50 g C m™*yr within the
subtropical gyre where there is downwelling
(negative contours) and comparative nutrient
depletion. Previous estimates of nutrient supply
seem inadequate to account for even these low
values, hence the proposal'™ that eddy circulation
may be responsible for supplying them. (Figure

N atu e 1 998del'ived from satellite estimates of surface

chlorophyll from ref. 4, and calculations of
vertical velocity at the base of the surface wind-
forced houndary (Ekman) layer®.)

Oschlies,
Garcon

Nature
1998
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Figure 1 Rasults from the assimilation experiment A, a, Surface eddy kinetic
anargy (EKE), which containg all deviations from the annual meaan, computzd
for a depth of 60m to avoid contamination by shallow Ekman currerts (in
cmfs) b, Annual mean nitrate flue into the upper 126m, which is taken as
proxy for the euphotic zone (in molMm=yr'). ¢ Annual mean primary
production {in g Cm~yr'). A constant ratio of C:N=G8 was assumed 1o give
carbon fluxes from the model. This is a rather conservative assumption™ and
will giva minimal estimates of carbon fluxes.
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Global surface temperature has seen two major warmings in the
20th Century: in the 1920s-30s, when it was very
concentrated around Greenland, and since the 1980s, when it
is much more global, yet still concentrated in high northern
latitudes.

Cod and herring fisheries responded to the much warmer
ocean temperatures, which lasted for more than 25 years.

Ironically we anticipate the ocean circulation slowing during
the current warming, whereas it 1s possible that an
accelerated oceanic meridional overturning circulation was a
factor in driving the 1920s warming.
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The standing-wave structure with wintertime Icelandic and
Aleutian Lows gives the atmosphere some of the east-west
structure and gyre circulation familiar to the ocean. The
rapid radiative cooling in fall sets up a cold dome which
slumps under gravity, tending to create a surface polar
vortex which is anticyclonic, the convergence overhead
strengthening the polar cylonic vortex...yet mountains and
vertical momentum transport can intervene, opposing the
surface high.

In particular, the Atlantic storm-track forms a continuous
connection between subtropics and the high Arctic.



Lau’s JAS 1979 winter diabatic heating of the 700mb-1000mb lower atmosphetre. Peak values are 100-150
watts/m? in the subtropical storm track regions

Ak G TR . R

f-.
PR I -
& [t P o
s

1

.w‘ L
r i '

=, o iy

r

‘

i

v

F1c. 21. Distribution of diabatic heating rate § at 700 mb,
Contour interval 1°C day™.



Held et al. (J.Clim.02) 100mb-1000mb diabatic heating for January
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FiG. 8. The column-averaged diabatic heating field in Jan obtained from the NCEP~NCAR
reanalysis as described in the appendix. The conwour interval is 0.5 K day '.



Qnet, net atmosphere-ocean heat flux, watts/m? (Keith Tellus 95)
(annual average)

180° 0w o 90°E 180

It should be noted that because the sun heats the ocean, O,
but does not cool the atmosphere, A, the most useful maps
of Qnet for A will differ those for O by the short-wave insolation.



(from Thompson+Wallace J Clim 2000)

cooling the ocean while warming the land in both

>

Atlantic and Pacific sectors. Could these oceanic advective heat sources be the root cause of

30 year trend in advection of time-averaged
winter temperature (925-500 Hpa av.)

..anomalous velocity and advection

this contribution to global warming over Eurasia?
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Hudson Strait salinity at 50m August 1965 (J.Lazier)
This is patt of the only 3-dimensional hydrographic survey ever made of the Labrador/Irminger seas.

SBalinity at 50m from Aug-Oct 1865 Hudson cruise data
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Instrument the Arctic Rim. Do ASOF.

Deploy the Eriksen Seaglider:

The solution?







THE END

An evacuated glass vessel with water in it illustrates the Clausius-Clapyron relation
between vapor pressure of water and temperature. The water is pushed from the vessel in
my hand to the ‘cold ball’, and the vapor pressure difference between the two ends is close
to the hydrostatic pressure measured by the column’s vertical displacement. One can fill
out the curve and see the greater sensitivity (to temperature) of water vapor production at
high, “tropical’ temperature. This all works because we shake the vessel so that a thin film
of water lies under my warm hand. It illustrates a key variable in the climate system.
When shaken this water “clinks’ like metal,vapor cavities opening up and slamming shut.
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FDEPS Lectures, November 2007
P.B. Rhines, Oceanography and Atmospheric Sciences, University of Washington

www.ocean.washington.edu/research/gfd

These lectures will address the dynamics of oceans and atmospheres, as seen through theory, laboratory
simulation and field observation. We will look particularly at high latitudes and climate dynamics of the ocean circulation
coupled to the atmospheric storm tracks. We will emphasize the dynamics that is difficult to represent in numerical
circulation models. We will discuss properties of oceans and atmospheres that are both fundamental, unsolved questions
of physics, and are also important, unsolved problems of global environmental change.

Lecture 1:

Is the ocean circulation important to global climate ? Does dense water drive the global conveyor circulation?
Fundamental questions about oceans and atmospheres that are currently under debate.

The field theory for buoyancy and potential vorticity.
Basic propagators: Rossby waves and geostrophic adjustment.
Potential vorticity: inversion and flux.
Lecture 2:
How do waves and eddies shape the general circulation, gyres and jet streams?
Almost invisible overturning circulations.
Lessons from Jupiter and Saturn.
The peculiar role of mountains, seamounts and continental-slope topography.
Lecture 3:
Dynamics of ocean gyres and their relation with the global conveyor circulation.
Water-mass transport, transformation and air-sea exchange of heat and fresh water.
Ocean overflows and their mixing.
Decadal trends in the global ocean circulation.
Lecture 4:
Heat, fresh-water, ice: convection in oceans and atmospheres and the texture of geophysical fluids.
Lecture 5:

Teaching young students about the global environment using the GFD laboratory: science meets energy and
environment in the lives of Arctic natives

Seminar:
Exploring high-latitude ocean climate with Seagliders and satellites
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Figure 10 The spin-up of a passive tracer in a gyre circulation with Péclet number of 2.5 x

10°, based on the basin scale and interior velocity (Musgrave 1985). The ridge of high values
does not follow the streamlines but represents the winding up of the initial conditions. A weak
diffusive spiral crossing y-lines remains in the steady state upon the homogenized plateau, The
injected boundary valyes can be followed through the weslern-boundary current, but they arc
quickly assimilated by horizontal mixing. The large tracer flux through the system depends on
thin boundary layers, which are treated with a stretched grid.
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